Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 8: 783302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071294

RESUMEN

Background and Aim: Plant-based diets are associated with potential health benefits, but the contribution of gut microbiota remains to be clarified. We aimed to identify differences in key features of microbiome composition and function with relevance to metabolic health in individuals adhering to a vegan vs. omnivore diet. Methods: This cross-sectional study involved lean, healthy vegans (n = 62) and omnivore (n = 33) subjects. We assessed their glucose and lipid metabolism and employed an integrated multi-omics approach (16S rRNA sequencing, metabolomics profiling) to compare dietary intake, metabolic health, gut microbiome, and fecal, serum, and urine metabolomes. Results: The vegans had more favorable glucose and lipid homeostasis profiles than the omnivores. Long-term reported adherence to a vegan diet affected only 14.8% of all detected bacterial genera in fecal microbiome. However, significant differences in vegan and omnivore metabolomes were observed. In feces, 43.3% of all identified metabolites were significantly different between the vegans and omnivores, such as amino acid fermentation products p-cresol, scatole, indole, methional (lower in the vegans), and polysaccharide fermentation product short- and medium-chain fatty acids (SCFAs, MCFAs), and their derivatives (higher in the vegans). Vegan serum metabolome differed markedly from the omnivores (55.8% of all metabolites), especially in amino acid composition, such as low BCAAs, high SCFAs (formic-, acetic-, propionic-, butyric acids), and dimethylsulfone, the latter two being potential host microbiome co-metabolites. Using a machine-learning approach, we tested the discriminative power of each dataset. Best results were obtained for serum metabolome (accuracy rate 91.6%). Conclusion: While only small differences in the gut microbiota were found between the groups, their metabolic activity differed substantially. In particular, we observed a significantly different abundance of fermentation products associated with protein and carbohydrate intakes in the vegans. Vegans had significantly lower abundances of potentially harmful (such as p-cresol, lithocholic acid, BCAAs, aromatic compounds, etc.) and higher occurrence of potentially beneficial metabolites (SCFAs and their derivatives).

2.
Nutrients ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781598

RESUMEN

Omega-3 polyunsaturated fatty acids (ω-3PUFAs) are introduced into parenteral nutrition (PN) as hepatoprotective but may be susceptible to the lipid peroxidation while olive oil (OO) is declared more peroxidation resistant. We aimed to estimate how the lipid composition of PN mixture affects plasma and erythrocyte lipidome and the propensity of oxidative stress. A cross-sectional comparative study was performed in a cohort of adult patients who were long-term parenterally administered ω-3 PUFAs without (FO/-, n = 9) or with (FO/OO, n = 13) olive oil and healthy age- and sex-matched controls, (n = 30). Lipoperoxidation assessed as plasma and erythrocyte malondialdehyde content was increased in both FO/- and FO/OO groups but protein oxidative stress (protein carbonyls in plasma) and low redox status (GSH/GSSG in erythrocytes) was detected only in the FO/- subcohort. The lipidome of all subjects receiving ω-3 PUFAs was enriched with lipid species containing ω-3 PUFAs (FO/-˃FO/OO). Common characteristic of all PN-dependent patients was high content of fatty acyl-esters of hydroxy-fatty acids (FAHFAs) in plasma while acylcarnitines and ceramides were enriched in erythrocytes. Plasma and erythrocyte concentrations of plasmanyls and plasmalogens (endogenous antioxidants) were decreased in both patient groups with a significantly more pronounced effect in FO/-. We confirmed the protective effect of OO in PN mixtures containing ω-3 PUFAs.


Asunto(s)
Antioxidantes/metabolismo , Emulsiones Grasas Intravenosas/farmacología , Ácidos Grasos Omega-3/farmacología , Estrés Oxidativo/efectos de los fármacos , Nutrición Parenteral/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios Transversales , Eritrocitos/metabolismo , Femenino , Aceites de Pescado/farmacología , Humanos , Enfermedades Intestinales/sangre , Enfermedades Intestinales/terapia , Lipidómica , Lípidos/sangre , Masculino , Persona de Mediana Edad , Aceite de Oliva/farmacología , Nutrición Parenteral/efectos adversos
3.
JPEN J Parenter Enteral Nutr ; 44(1): 105-118, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31032975

RESUMEN

BACKGROUND: The gut microbiome and metabolome may significantly influence clinical outcomes in patients with short bowel syndrome (SBS). The study aimed to describe specific metagenomic/metabolomics profiles of different SBS types and to identify possible therapeutic targets. METHODS: Fecal microbiome (FM), volatile organic compounds (VOCs), and bile acid (BA) spectrum were analyzed in parenteral nutrition (PN)-dependent SBS I, SBS II, and PN-independent (non-PN) SBS patients. RESULTS: FM in SBS I, SBS II, and non-PN SBS shared characteristic features (depletion of beneficial anaerobes, high abundance of Lactobacilaceae and Enterobacteriaceae). SBS I patients were characterized by the abundance of oxygen-tolerant microrganisms and depletion of strict anaerobes. Non-PN SBS subjects showed markers of partial FM normalization. FM dysbiosis was translated into VOC and BA profiles characteristic for each SBS cohort. A typical signature of all SBS patients comprised high saturated aldehydes and medium-chain fatty acids and reduced short-chain fatty acid (SCFA) content. Particularly, SBS I and II exhibited low protein metabolism intermediate (indole, p-cresol) content despite the hypothetical presence of relevant metabolism pathways. Distinctive non-PN SBS marker was high phenol content. SBS patients' BA fecal spectrum was enriched by chenodeoxycholic and deoxycholic acids and depleted of lithocholic acid. CONCLUSIONS: Environmental conditions in SBS gut significantly affect FM composition and metabolic activity. The common feature of diverse SBS subjects is the altered VOC/BA profile and the lack of important products of microbial metabolism. Strategies oriented on the microbiome/metabolome reconstitution and targeted delivery of key compounds may represent a promising therapeutic strategy in SBS patients.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Metaboloma , Síndrome del Intestino Corto/microbiología , Ácidos y Sales Biliares/análisis , Disbiosis , Heces/microbiología , Humanos , Nutrición Parenteral , Compuestos Orgánicos Volátiles/análisis
4.
Sci Rep ; 9(1): 19097, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836843

RESUMEN

Parenteral nutrition (PN) is often associated with the deterioration of liver functions (PNALD). Omega-3 polyunsaturated fatty acids (PUFA) were reported to alleviate PNALD but the underlying mechanisms have not been fully unraveled yet. Using omics´ approach, we determined serum and liver lipidome, liver proteome, and liver bile acid profile as well as markers of inflammation and oxidative stress in rats administered either ω-6 PUFA based lipid emulsion (Intralipid) or ω-6/ω-3 PUFA blend (Intralipid/Omegaven) via the enteral or parenteral route. In general, we found that enteral administration of both lipid emulsions has less impact on the liver than the parenteral route. Compared with parenterally administered Intralipid, PN administration of ω-3 PUFA was associated with 1. increased content of eicosapentaenoic (EPA)- and docosahexaenoic (DHA) acids-containing lipid species; 2. higher abundance of CYP4A isoenzymes capable of bioactive lipid synthesis and the increased content of their potential products (oxidized EPA and DHA); 3. downregulation of enzymes involved CYP450 drug metabolism what may represent an adaptive mechanism counteracting the potential negative effects (enhanced ROS production) of PUFA metabolism; 4. normalized anti-oxidative capacity and 5. physiological BAs spectrum. All these findings may contribute to the explanation of ω-3 PUFA protective effects in the context of PN.


Asunto(s)
Ácidos y Sales Biliares/análisis , Nutrición Enteral/métodos , Ácidos Grasos Omega-3/química , Hígado/metabolismo , Nutrición Parenteral/métodos , Proteoma/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Emulsiones , Ácidos Grasos Insaturados/metabolismo , Aceites de Pescado , Inflamación , Lipidómica , Lípidos/química , Masculino , Malondialdehído/metabolismo , Metabolómica , Estrés Oxidativo , Oxígeno/metabolismo , Fosfolípidos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Aceite de Soja
5.
Artículo en Inglés | MEDLINE | ID: mdl-31114547

RESUMEN

Background: Liver transplantation leads to non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in up to 40% of graft recipients. The aim of our study was to assess transcriptomic profiles of liver grafts and to contrast the hepatic gene expression between the patients after transplantation with vs. without graft steatosis. Methods: Total RNA was isolated from liver graft biopsies of 91 recipients. Clinical characteristics were compared between steatotic (n = 48) and control (n = 43) samples. Their transcriptomic profiles were assessed using Affymetrix HuGene 2.1 ST Array Strips processed in Affymetrix GeneAtlas. Data were analyzed using Partek Genomics Suite 6.6 and Ingenuity Pathway Analysis. Results: The individuals with hepatic steatosis showed higher indices of obesity including weight, waist circumference or BMI but the two groups were comparable in measures of insulin sensitivity and cholesterol concentrations. We have identified 747 transcripts (326 upregulated and 421 downregulated in steatotic samples compared to controls) significantly differentially expressed between grafts with vs. those without steatosis. Among the most downregulated genes in steatotic samples were P4HA1, IGF1, or fetuin B while the most upregulated were PLIN1 and ME1. Most influential upstream regulators included HNF1A, RXRA, and FXR. The metabolic pathways dysregulated in steatotic liver grafts comprised blood coagulation, bile acid synthesis and transport, cell redox homeostasis, lipid and cholesterol metabolism, epithelial adherence junction signaling, amino acid metabolism, AMPK and glucagon signaling, transmethylation reactions, and inflammation-related pathways. The derived mechanistic network underlying major transcriptome differences between steatotic samples and controls featured PPARA and SERPINE1 as main nodes. Conclusions: While there is a certain overlap between the results of the current study and published transcriptomic profiles of non-transplanted livers with steatosis, we have identified discrete characteristics of the non-alcoholic fatty liver disease in liver grafts potentially utilizable for the establishment of predictive signature.

6.
Nutrients ; 9(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880224

RESUMEN

Parenteral nutrition (PN) provides life-saving nutritional support in situations where caloric supply via the enteral route cannot cover the necessary needs of the organism. However, it does have serious adverse effects, including parenteral nutrition-associated liver disease (PNALD). The development of liver injury associated with PN is multifactorial, including non-specific intestine inflammation, compromised intestinal permeability, and barrier function associated with increased bacterial translocation, primary and secondary cholangitis, cholelithiasis, short bowel syndrome, disturbance of hepatobiliary circulation, lack of enteral nutrition, shortage of some nutrients (proteins, essential fatty acids, choline, glycine, taurine, carnitine, etc.), and toxicity of components within the nutrition mixture itself (glucose, phytosterols, manganese, aluminium, etc.). Recently, an increasing number of studies have provided evidence that some of these factors are directly or indirectly associated with microbial dysbiosis in the intestine. In this review, we focus on PN-induced changes in the taxonomic and functional composition of the microbiome. We also discuss immune cell and microbial crosstalk during parenteral nutrition, and the implications for the onset and progression of PNALD. Finally, we provide an overview of recent advances in the therapeutic utilisation of pro- and prebiotics for the mitigation of PN-associated liver complications.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Microbioma Gastrointestinal , Nutrición Parenteral/efectos adversos , Animales , Humanos , Intestinos/citología
7.
Nutrition ; 31(7-8): 1045-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26059381

RESUMEN

OBJECTIVE: The metabolic health effects of conjugated linoleic acid (CLA), which is one of the principal polyunsaturated fatty acids, are controversial and still not fully accepted. The aim of this study was to examine the effects of CLA on adiposity, ectopic lipid accumulation, and insulin-resistant states in a metabolic syndrome model of non-obese hereditary rats with hypertriacylglycerolmia (HHTg). METHODS: Groups of adult male HHTg rats were fed a high-carbohydrate diet (70% sucrose) with a 2% mixture of CLA isomers, or with the same amount of sunflower oil (control group) for 2 mo. RESULTS: CLA supplementation decreased body weight gain (P < 0.05) and visceral adipose tissue weight (P < 0.01), and distinctively reduced serum triacylglycerols (P < 0.01) and triacylglycerol accumulation in the liver, heart, muscle, and aorta. CLA-treated rats exhibited increased insulin sensitivity in the adipose (P < 0.01), a higher release of fatty acids (P < 0.001), and increased adiponectin secretion (P < 0.01).In the skeletal muscle, CLA supplementation was associated with increased glucose oxidation (P < 0.01) and an elevated anti-inflammatory index (P < 0.05), according to phospholipid fatty acid composition. In the liver, CLA reduced the oxidized form of glutathione and elevated the activity of glutathione-dependent antioxidant enzymes. CONCLUSION: Results suggest that CLA supplementation may protect against HHTg-induced dyslipidemia, ectopic lipid deposition, and insulin resistance. Increased glucose oxidation in the skeletal muscle as well as adiponectin secretion may play a role in the mechanism of the CLA action. Results suggest that CLA could reduce the negative consequences of HHTg and metabolic syndrome.


Asunto(s)
Suplementos Dietéticos , Hipertrigliceridemia/dietoterapia , Resistencia a la Insulina , Ácidos Linoleicos Conjugados/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Glucosa/metabolismo , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/etiología , Insulina/sangre , Ácidos Linoleicos Conjugados/administración & dosificación , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA