Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 10: 706, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214224

RESUMEN

Successful germination represents a crucial developmental transition in the plant lifecycle and is important both for crop yields and plant survival in natural ecosystems. However, germination potential decreases during storage and seed longevity is a key determinant of crop production. Decline in germination vigor is initially manifest as an increasing delay to radicle emergence and the completion of germination and eventually culminating in loss of seed viability. The molecular mechanisms that determine seed germination vigor and viability remain obscure, although deterioration in seed quality is associated with the accumulation of damage to cellular structures and macromolecules including lipids, protein, and nucleic acids. In desiccation tolerant seeds, desiccation/rehydration cycles and prolonged periods in the dry quiescent state are associated with remarkable levels of stress to the embryo genome which can result in mutagenesis of the genetic material, inhibition of transcription and replication and delayed growth and development. An increasing number of studies are revealing DNA damage accumulated in the embryo genome, and the repair capacity of the seed to reverse this damage, as major factors that determine seed vigor and viability. Recent findings are now establishing important roles for the DNA damage response in regulating germination, imposing a delay to germination in aged seed to minimize the deleterious consequences of DNA damage accumulated in the dry quiescent state. Understanding the mechanistic basis of seed longevity will underpin the directed improvement of crop varieties and support preservation of plant genetic resources in seed banks.

2.
J Exp Bot ; 67(22): 6373-6384, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27811004

RESUMEN

Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests.


Asunto(s)
Carica/metabolismo , Germinación/fisiología , Respuesta al Choque Térmico/fisiología , Semillas/metabolismo , Carica/fisiología , Cicloheximida/farmacología , Deshidratación , Germinación/efectos de los fármacos , Giberelinas/farmacología , Calor , Latencia en las Plantas/efectos de los fármacos , Latencia en las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Semillas/fisiología
3.
Proc Natl Acad Sci U S A ; 113(34): 9647-52, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27503884

RESUMEN

Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.


Asunto(s)
Arabidopsis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Germinación/genética , Semillas/genética , Adaptación Fisiológica/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , ADN de Plantas/genética , Desecación , Inestabilidad Genómica , Mutación , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Tiempo
4.
J Exp Bot ; 66(12): 3549-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25750428

RESUMEN

Seeds are important to agriculture and conservation of plant biodiversity. In agriculture, seed germination performance is an important determinant of crop yield, in particular under adverse climatic conditions. Deterioration in seed quality is associated with the accumulation of cellular damage to macromolecules including lipids, protein, and DNA. Mechanisms that mitigate the deleterious cellular damage incurred in the quiescent state and in cycles of desiccation-hydration are crucial for the maintenance of seed viability and germination vigour. In early-imbibing seeds, damage to the embryo genome must be repaired prior to initiation of cell division to minimize growth inhibition and mutation of genetic information. Here we review recent advances that have established molecular links between genome integrity and seed quality. These studies identified that maintenance of genome integrity is particularly important to the seed stage of the plant lifecycle, revealing new insight into the physiological roles of plant DNA repair and recombination mechanisms. The high conservation of DNA repair and recombination factors across plant species underlines their potential as promising targets for the improvement of crop performance and development of molecular markers for prediction of seed vigour.


Asunto(s)
Genoma de Planta , Germinación/genética , Fenómenos Fisiológicos de las Plantas/genética , Semillas/genética , Daño del ADN/genética , Reparación del ADN/genética
5.
New Phytol ; 192(4): 805-822, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21988671

RESUMEN

DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Genoma de Planta/genética , Plantas/genética , Mutágenos/toxicidad , Desarrollo de la Planta , Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
6.
Plant J ; 63(5): 848-60, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20584150

RESUMEN

DNA repair is important for maintaining genome integrity. In plants, DNA damage accumulated in the embryo of seeds is repaired early in imbibition, and is important for germination performance and seed longevity. An essential step in most repair pathways is the DNA ligase-mediated rejoining of single- and double-strand breaks. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Here, we report the characterization of DNA LIGASE VI, which is only found in plant species. The primary structure of this ligase shows a unique N-terminal region that contains a ß-CASP motif, which is found in a number of repair proteins, including the DNA double-strand break (DSB) repair factor Artemis. Phenotypic analysis revealed a delay in the germination of atlig6 mutants compared with wild-type lines, and this delay becomes markedly exacerbated in the presence of the genotoxin menadione. Arabidopsis atlig6 and atlig6 atlig4 mutants display significant hypersensitivity to controlled seed ageing, resulting in delayed germination and reduced seed viability relative to wild-type lines. In addition, atlig6 and atlig6 atlig4 mutants display increased sensitivity to low-temperature stress, resulting in delayed germination and reduced seedling vigour upon transfer to standard growth conditions. Seeds display a rapid transcriptional DNA DSB response, which is activated in the earliest stages of water imbibition, providing evidence for the accumulation of cytotoxic DSBs in the quiescent seed. These results implicate AtLIG6 and AtLIG4 as major determinants of Arabidopsis seed quality and longevity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ADN Ligasas/genética , Semillas/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Clonación Molecular , Frío , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Estrés Oxidativo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Homología de Secuencia de Aminoácido
7.
BMC Plant Biol ; 9: 79, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19558640

RESUMEN

BACKGROUND: DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability. RESULTS: Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs) and also double strand breaks (DSBs), implicating AtLIG1 in repair of both these lesions. CONCLUSION: Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.


Asunto(s)
Arabidopsis/genética , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , ADN Ligasas/metabolismo , Reparación del ADN , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Tamaño de la Célula , Ensayo Cometa , ADN Ligasa (ATP) , Interferencia de ARN
8.
J Biol Chem ; 284(1): 525-533, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-19001368

RESUMEN

The CrCAX1 gene encoding a Ca2+/H+ and Na+/H+ exchanger was cloned and characterized from the unicellular green alga Chlamydomonas reinhardtii to begin to understand the mechanisms of cation homeostasis in this model organism. CrCAX1 was more closely related to fungal cation exchanger (CAX) genes than those from higher plants but has structural characteristics similar to plant Ca2+/H+ exchangers including a long N-terminal tail. When CrCAX1-GFP was expressed in Saccharomyces cerevisiae, it localized at the vacuole. CrCAX1 could suppress the Ca2+-hypersensitive phenotype of a yeast mutant and mediated proton gradient-dependent Ca2+/H+ exchange activity in vacuolar membrane vesicles. Ca2+ transport activity was increased following N-terminal truncation of CrCAX1, suggesting the existence of an N-terminal auto-regulatory mechanism. CrCAX1 could also provide tolerance to Na+ stress when expressed in yeast or Arabidopsis thaliana because of Na+/H+ exchange activity. This Na+/H+ exchange activity was not regulated by the N terminus of the CrCAX1 protein. A subtle tolerance by CrCAX1 in yeast to Co2+ stress was also observed. CrCAX1 was transcriptionally regulated in Chlamydomonas cells grown in elevated Ca2+ or Na+. This study has thus uncovered a novel eukaryotic proton-coupled transporter, CrCAX1, that can transport both monovalent and divalent cations and that appears to play a role in cellular cation homeostasis by the transport of Ca2+ and Na+ into the vacuole.


Asunto(s)
Proteínas Algáceas/metabolismo , Antiportadores/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Chlamydomonas reinhardtii/metabolismo , Homeostasis/fisiología , Proteínas Protozoarias/metabolismo , Sodio/metabolismo , Proteínas Algáceas/genética , Animales , Antiportadores/genética , Secuencia de Bases , Proteínas de Transporte de Catión/genética , Cationes/metabolismo , Chlamydomonas reinhardtii/genética , Transporte Iónico/fisiología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/fisiología , Proteínas Protozoarias/genética , Vacuolas/genética , Vacuolas/metabolismo
10.
Plant J ; 52(1): 41-52, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17672843

RESUMEN

The ability of plants to repair DNA double-strand breaks (DSBs) is essential for growth and fertility. The Arabidopsis DSB repair proteins AtRAD50 and AtMRE11 form part of an evolutionarily conserved complex that, in Saccharomyces cerevisiae and mammals, includes a third component termed XRS2 and NBS1, respectively. The MRN complex (MRX in yeast) has a direct role in DSB repair and is also required for DNA damage signaling and checkpoint activation in a pathway mediated by the protein kinase ATM. This study characterizes Arabidopsis and maize NBS1 orthologues that share conserved protein motifs with human NBS1. Both plant NBS1 proteins interact with the corresponding MRE11 orthologues, and deletion analysis of AtNBS1 defines a region towards the C-terminus (amino acids 465-500) that is required for interaction with AtMRE11. Arabidopsis lines homozygous for a T-DNA insertional mutation in AtNBS1 display hypersensitivity to the DNA cross-linking reagent mitomycin C, and this phenotype can be rescued by complementation with the wild-type gene, consistent with a function for AtNBS1 in plant DSB repair. Analysis of atnbs1-1 atatm double mutants revealed a role for AtNBS1 in meiotic recombination. While atatm mutants produce reduced seed numbers, plants deficient in both AtATM and AtNBS1 are completely infertile. Cytological analysis of these double mutants revealed incomplete chromosome pairing and synapsis in meiotic prophase, and extensive chromosome fragmentation in metaphase I and subsequent stages. These results suggest a novel role for AtNBS1 that is independent of AtATM-mediated signaling and functions in the very early stages of meiosis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Reparación del ADN/fisiología , Meiosis/fisiología , Recombinación Genética , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , ADN Bacteriano , Proteínas de Unión al ADN/fisiología , Proteína Homóloga de MRE11 , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
11.
Plant J ; 47(3): 356-67, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16790030

RESUMEN

The Arabidopsis DNA ligase 1 gene (AtLIG1) is indispensable for cell viability. AtLIG1 expresses one major and two minor mRNA transcripts differing only in the length of the 5' untranslated leader sequences preceding a common ORF. Control of AtLIG1 isoform production and intracellular targeting depends upon mechanisms controlling the choice of translation initiation site within the AtLIG1 ORF. Confocal laser scanning microscopy of green fluorescent protein-tagged AtLIG1 isoforms expressed in Arabidopsis revealed that translation of AtLIG1 mRNA transcripts from the first in-frame start codon produces an AtLIG1 isoform that is targeted exclusively to the mitochondria. Translation initiation from the second in-frame start codon produces an AtLIG1 isoform targeted only to the nucleus. There is no evidence for AtLIG1-GFP being targeted to chloroplasts. The mitochondrial AtLIG1 isoform possesses both an N-terminal mitochondrial-targeting signal and an internal bipartite nuclear localization signal (NLS) yet is targeted only to mitochondria, demonstrating a hierarchical dominance of the mitochondrial presequence over the NLS. The length of the 5'-UTR and more significantly the nucleotide context around alternative start codons in the AtLIG1 transcripts affect translation initiation to ensure a balanced synthesis of both nuclear and mitochondrial AtLIG1 isoforms, probably via a context-dependent leaky ribosome scanning mechanism.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ADN Ligasas/genética , ADN Ligasas/metabolismo , Mitocondrias/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Secuencia de Bases , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Codón Iniciador , ADN Ligasa (ATP) , ADN Ligasas/química , Evolución Molecular , Proteínas Fluorescentes Verdes/análisis , Datos de Secuencia Molecular , Señales de Localización Nuclear/fisiología , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína/fisiología , Estructura Secundaria de Proteína , Transporte de Proteínas , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/análisis
12.
Ann Bot ; 98(1): 1-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16735405

RESUMEN

BACKGROUND: Two families of proteins that transport small peptides, the oligopeptide transporters (OPTs) and the peptide transporters (PTRs), have been recognized in eukaryotes. Higher plants contain a far greater number of genes for these transporters than do other eukaryotes. This may be indicative of the relative importance of (oligo)peptides and their transport to plant growth and metabolism. RECENT PROGRESS: Recent studies are now allowing us to assign functions to these transporters and are starting to identify their in-planta substrates, revealing unexpected and important contributions of the transporters to plant growth and developmental processes. This Botanical Briefing appraises recent findings that PTRs and OPTs have key roles to play in the control of plant cell growth and development. Evidence is presented that some of these transporters have functions outside that of nitrogen nutrition and that these carriers can also surprise us with their totally unexpected choice of substrates.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Oligopéptidos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas de Transporte de Membrana/clasificación , Proteínas de Transporte de Membrana/fisiología , Familia de Multigenes , Péptidos/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/fisiología , Especificidad por Sustrato
13.
New Phytol ; 168(3): 511-28, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16313635

RESUMEN

As obligate phototrophs, plants harness energy from sunlight to split water, producing oxygen and reducing power. This lifestyle exposes plants to particularly high levels of genotoxic stress that threatens genomic integrity, leading to mutation, developmental arrest and cell death. Plants, which with algae are the only photosynthetic eukaryotes, have evolved very effective pathways for DNA damage signalling and repair, and this review summarises our current understanding of these processes in the responses of plants to genotoxic stress. We also identify how the use of new and emerging technologies can complement established physiological and ecological studies to progress the application of this knowledge in biotechnology.


Asunto(s)
Reparación del ADN/genética , Genoma de Planta , Plantas/genética , Disparidad de Par Base , Daño del ADN , Reparación del ADN/efectos de la radiación , Fotosíntesis , Recombinación Genética , Rayos Ultravioleta
14.
J Exp Bot ; 56(416): 1545-52, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15824072

RESUMEN

Protein reserves in the cereal endosperm are sequentially degraded to small peptides and amino acids during germination and these are translocated across the scutellum to support growth of the embryo. Peptide transport in the germinating barley grain is mediated by specific carriers localized to the plasma membrane of the scutellar epithelium. In isolated barley embryos peptide transport is rapidly inhibited by amino acid concentrations comparable with those found in the post-germination barley grain. However, this inhibition of HvPTR1 activity is not effected at either the transcriptional or translational level. The protein phosphatase inhibitor okadaic acid repressed transport of Ala-[14C]Phe, but not [14C]Ala, into the barley scutellar epithelium. In vivo [32P]orthophosphate labelling studies of barley scutellar tissue in combination with immunoprecipitation studies using antiserum raised to HvPTR1 showed that HvPTR1 (66 kDa) is phosphorylated in the presence of amino acids. Immunopurified HvPTR1 was further demonstrated to be phosphorylated on serine residues. Digestion with the N-glycosidase enzyme PNGase F results in a shift in the molecular mass of the protein by 10 kDa, indicating that HvPTR1 is an N-linked glycoprotein. These results provide strong circumstantial evidence that HvPTR1 peptide transport activity in the germinating barley grain is regulated at the post-translational level by phosphorylation in response to rising levels of amino acids emanating from the endosperm as a result of storage protein breakdown and mobilization. This is potentially an important element in balancing the flux of organic nitrogen and carbon from the endosperm to embryo during germination and seedling establishment.


Asunto(s)
Aminoácidos/metabolismo , Germinación/fisiología , Hordeum/enzimología , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico/fisiología , Transporte Biológico Activo/fisiología , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Hordeum/metabolismo , Moduladores del Transporte de Membrana , Proteínas de Transporte de Membrana/antagonistas & inhibidores , Fosforilación , Proteínas de Plantas/antagonistas & inhibidores , Factores de Tiempo
15.
Plant J ; 31(4): 517-28, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12182708

RESUMEN

Double-strand breaks (DSBs) in DNA may occur spontaneously in the cell or be induced experimentally by gamma-irradiation, and represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination appears to be the major pathway for DSB repair in humans and plants, and it may also be the major route whereby T-DNA integrates into the plant genome during cell transformation. In yeast and mammals, the exposed ends of damaged DNA are bound with high affinity by a dimer of Ku70 and Ku80 proteins, which protects the ends from exonucleases and juxtaposes the two ends of the DSB, independent of sequence homology. Here we report the functional characterization of Ku70 and Ku80 from Arabidopsis thaliana, and demonstrate that AtKu80 and AtKu70 form a heterodimer with DNA binding activity that is specific for DNA ends. An atku80 knockout mutant shows hypersensitivity to the DNA-damaging agents menadione and bleomycin, consistent with a role for AtKu80 in the repair of DSBs in vivo in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ADN Helicasas/genética , Reparación del ADN/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Secuencia de Bases , Sitios de Unión/genética , Bleomicina/farmacología , Daño del ADN , ADN Helicasas/fisiología , ADN Bacteriano/genética , Proteínas de Unión al ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Imidazoles/farmacología , Datos de Secuencia Molecular , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Análisis de Secuencia , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Vitamina K 3/farmacología
16.
J Exp Bot ; 53(371): 1005-15, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11971912

RESUMEN

DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.


Asunto(s)
Arabidopsis/enzimología , Desoxirribodipirimidina Fotoliasa/metabolismo , Dímeros de Pirimidina/metabolismo , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Daño del ADN , Oscuridad , Desoxirribodipirimidina Fotoliasa/aislamiento & purificación , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/efectos de la radiación , Temperatura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...