Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39086238

RESUMEN

The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.

2.
Curr Issues Mol Biol ; 46(4): 3364-3378, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666941

RESUMEN

Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.

3.
Free Radic Biol Med ; 217: 68-115, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508405

RESUMEN

The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.


Asunto(s)
Técnicas Biosensibles , Espectrometría Raman , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Técnicas Biosensibles/métodos , Oxidación-Reducción , Biología
4.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043869

RESUMEN

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Asunto(s)
Peróxido de Hidrógeno , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mioglobina , Troponina T/metabolismo , Hipoxia de la Célula , Hipoxia/metabolismo , Oxidación-Reducción , Isoformas de Proteínas/metabolismo
5.
Nat Commun ; 14(1): 8380, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104196

RESUMEN

How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.


Asunto(s)
Astrocitos , Corteza Cerebral , Humanos , Anciano , Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Envejecimiento/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Atrofia/metabolismo
6.
Free Radic Biol Med ; 208: 153-164, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543166

RESUMEN

Diabetes is one of the significant risk factors for ischemic stroke. Hyperglycemia exacerbates the pathogenesis of stroke, leading to more extensive cerebral damage and, as a result, to more severe consequences. However, the mechanism whereby the hyperglycemic status in diabetes affects biochemical processes during the development of ischemic injury is still not fully understood. In the present work, we record for the first time the real-time dynamics of H2O2 in the matrix of neuronal mitochondria in vitro in culture and in vivo in the brain tissues of rats during development of ischemic stroke under conditions of hyperglycemia and normal glucose levels. To accomplish this, we used a highly sensitive HyPer7 biosensor and a fiber-optic interface technology. We demonstrated that a high glycemic status does not affect the generation of H2O2 in the tissues of the ischemic core, while significantly exacerbating the consequences of pathogenesis. For the first time using Raman microspectroscopy approach, we have shown how a sharp increase in the blood glucose level increases the relative amount of reduced cytochromes in the mitochondrial electron transport chain in neurons under normal conditions in awake mice.


Asunto(s)
Isquemia Encefálica , Diabetes Mellitus , Hiperglucemia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Ratones , Animales , Peróxido de Hidrógeno , Accidente Cerebrovascular/patología , Hiperglucemia/patología , Isquemia Encefálica/patología
7.
Mol Psychiatry ; 28(7): 2697-2706, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037874

RESUMEN

Astrocytes, an integral component of the central nervous system (CNS), contribute to the maintenance of physiological homeostasis through their roles in synaptic function, K+ buffering, blood-brain barrier (BBB) maintenance, and neuronal metabolism. Reactive astrocytes refer to astrocytes undergoing morphological, molecular and functional remodelling in response to pathological stimuli. The activation and differentiation of astrocytes are implicated in the pathogenesis of multiple neurodegenerative diseases. However, there are still controversies regarding their subset identification, function and nomenclature in neurodegeneration. In this review, we revisit the multidimensional roles of reactive astrocytes in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Furthermore, we propose a precise linkage between astrocyte subsets and their functions based on single-cell sequencing analyses.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/patología
8.
Free Radic Biol Med ; 196: 133-144, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36649901

RESUMEN

The balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria. We have developed a novel sensor that uses unique properties of label-free surface-enhanced Raman spectroscopy (SERS) to identify conformational changes in heme of cytochrome c and to elucidate their role in functioning mitochondria. We have verified that molecule bond vibrations assessed by SERS are a reliable indicator of the heme conformation during changes in the inner mitochondrial membrane potential and ETC activity. We have demonstrated that cytochrome c heme reversibly switches between planar and ruffled conformations in response to the inner mitochondrial membrane potential (ΔΨ) and H+ concentration in the intermembrane space. This regulates the efficiency of the mitochondrial respiratory chain, thus, adjusting the mitochondrial respiration to the cell's consumption of ATP and the overall activity. We have found that under hypertensive conditions cytochrome c heme loses its sensitivity to ΔΨ that can affect the regulation of ETC activity. The ability of the proposed SERS-based sensor to track mitochondrial function opens broad perspectives in cell bioenergetics.


Asunto(s)
Citocromos c , Hemo , Citocromos c/metabolismo , Hemo/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
9.
Acta Physiol (Oxf) ; 236(1): e13847, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653278

RESUMEN

AIM: A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS: We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS: We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION: Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.


Asunto(s)
Astrocitos , Dieta Alta en Grasa , Animales , Astrocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Lípidos , Ratones , Plasticidad Neuronal
10.
Biomolecules ; 12(5)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35625593

RESUMEN

A key event in the cytochrome c-dependent apoptotic pathway is the permeabilization of the outer mitochondrial membrane, resulting in the release of various apoptogenic factors, including cytochrome c, into the cytosol. It is believed that the permeabilization of the outer mitochondrial membrane can be induced by the peroxidase activity of cytochrome c in a complex with cardiolipin. Using a number of mutant variants of cytochrome c, we showed that both substitutions of Lys residues from the universal binding site for oppositely charged Glu residues and mutations leading to a decrease in the conformational mobility of the red Ω-loop in almost all cases did not affect the ability of cytochrome c to bind to cardiolipin. At the same time, the peroxidase activity of all mutant variants in a complex with cardiolipin was three to five times higher than that of the wild type. A pronounced increase in the ability to permeabilize the lipid membrane in the presence of hydrogen peroxide, as measured by calcein leakage from liposomes, was observed only in the case of four substitutions in the red Ω-loop (M4 mutant). According to resonance and surface-enhanced Raman spectroscopy, the mutations caused significant changes in the heme of oxidized cytochrome c molecules resulting in an increased probability of the plane heme conformation and the enhancement of the rigidity of the protein surrounding the heme. The binding of wild-type and mutant forms of oxidized cytochrome c to cardiolipin-containing liposomes caused the disordering of the acyl lipid chains that was more pronounced for the M4 mutant. Our findings indicate that the Ω-loop is important for the pore formation in cardiolipin-containing membranes.


Asunto(s)
Cardiolipinas , Citocromos c , Antioxidantes , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Hemo , Liposomas/metabolismo , Mutación , Peroxidasas/genética
11.
Biosensors (Basel) ; 12(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049660

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a promising tool that can be used in the detection of molecular changes triggered by disease development. Cardiovascular diseases (CVDs) are caused by multiple pathologies originating at the cellular level. The identification of these deteriorations can provide a better understanding of CVD mechanisms, and the monitoring of the identified molecular changes can be employed in the development of novel biosensor tools for early diagnostics. We applied plasmonic SERS nanosensors to assess changes in the properties of erythrocytes under normotensive and hypertensive conditions in the animal model. We found that spontaneous hypertension in rats leads (i) to a decrease in the erythrocyte plasma membrane fluidity and (ii) to a decrease in the mobility of the heme of the membrane-bound hemoglobin. We identified SERS parameters that can be used to detect pathological changes in the plasma membrane and submembrane region of erythrocytes.


Asunto(s)
Técnicas Biosensibles , Hipertensión , Animales , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hipertensión/sangre , Hipertensión/diagnóstico , Ratas , Espectrometría Raman
12.
Redox Biol ; 36: 101602, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32570189

RESUMEN

A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN-), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN- therapeutically in different disease settings. Unlike HOCl, HOSCN can be detoxified by thioredoxin reductase, and reacts selectively with thiols to result in reversible modifications, which could potentially reduce the extent of MPO-induced damage during chronic inflammation. In this study, we show that exposure of macrophages, a key inflammatory cell type, to HOSCN results in the reversible modification of multiple mitochondrial proteins, leading to increased mitochondrial membrane permeability, decreased oxidative phosphorylation and reduced formation of ATP. The increased permeability and reduction in ATP could be reversed by pre-treatment of the macrophages with cyclosporine A, implicating a role for the mitochondrial permeability transition pore. HOSCN also drives cells to utilise fatty acids as an energetic substrate after the inhibition of oxidative phosphorylation. Raman imaging studies highlighted the ability of HOSCN to perturb the electron transport chain of mitochondria and redistribute these organelles within the cell. Taken together, these data provide new insight into the pathways by which HOSCN can induce cytotoxicity and cellular damage, which may have relevance for the development of inflammatory disease, and therapeutic strategies to reduce HOCl-induced damage by supplementation with SCN-.


Asunto(s)
Peroxidasa , Tiocianatos , Línea Celular , Ácido Hipocloroso/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Oxidantes/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Tiocianatos/metabolismo
13.
J Biophotonics ; 11(6): e201700311, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603883

RESUMEN

Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice. We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1 (symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1 and 1602 and 1638 cm-1 (vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount of oxyhemoglobin in venules, arterioles, and capillaries. in vivo measurements of blood oxygenation in the cortex of mice ventilated with inspiratory gas mixtures containing different amounts of oxygen-normoxia, hyperoxia and hypoxia-validate the proposed approach. Our method allows to visualize blood saturation with O2 in different microvascular networks.


Asunto(s)
Encéfalo/metabolismo , Oxígeno/sangre , Oxígeno/metabolismo , Espectrometría Raman , Animales , Hemoglobinas/metabolismo , Masculino , Ratones
14.
PLoS One ; 12(5): e0178280, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562658

RESUMEN

We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme. It is suggested that the conformational mobility of cytochrome c heme is responsible for its optimal orientation with respect to electron donor and acceptor within ubiquinol-cytochrome c oxidoreductase (complex III) and cytochrome c oxidase (complex IV), respectively, thus, ensuring electron transfer from complex III to complex IV. To validate the model, we design several mutant variants of horse cytochrome c with multiple substitutions of amino acid residues in the P76GTKMIFA83 sequence that reduce its ability to undergo conformational rearrangements. With this, we study the succinate-cytochrome c reductase and cytochrome c oxidase activities of rat liver mitoplasts in the presence of mutant variants of cytochrome c. The electron transport activity of the mutant variants decreases to different extent. Resonance Raman spectroscopy (RRS) and surface-enhanced Raman spectroscopy (SERS) data demonstrate, that all mutant cytochromes possess heme with the higher degree of ruffling deformation, than that of the wild-type (WT) cytochrome c. The increase in the ruffled deformation of the heme of oxidized cytochromes correlated with the decrease in the electron transport rate of ubiquinol-cytochrome c reductase (complex III). Besides, all mutant cytochromes have lower mobility of the pyrrol rings and methine bridges, than WT cytochrome c. We show that a decrease in electron transport activity in the mutant variants correlates with conformational changes and reduced mobility of heme porphyrin. This points to a significant role of the P76GTKMIFA83 fragment in the electron transport function of cytochrome c.


Asunto(s)
Citocromos c/metabolismo , Microsomas Hepáticos/enzimología , Sustitución de Aminoácidos , Animales , Citocromos c/química , Citocromos c/genética , Caballos , Mutación , Ratas
15.
Sci Rep ; 5: 13793, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26346634

RESUMEN

Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman scattering due to high concentration of electric near-field and large contact area between mitochondria and nanostructured surfaces.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Mitocondrias/metabolismo , Espectrometría Raman , Adenosina Trifosfato/biosíntesis , Animales , Transporte de Electrón , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/metabolismo , Protones , Ratas , Espectrometría Raman/métodos
16.
PLoS One ; 8(8): e70488, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009655

RESUMEN

We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb). The cytochrome peaks decreased in intensity upon FCCP treatment, as predicted from uncoupling mitochondrial respiration. Conversely, transient hypoxia causes the reversible increase in the intensity of peaks assigned to cytochromes c and c1, reflecting electron stacking proximal to cytochrome oxidase due to the lack of terminal electron acceptor O2. Intensities of peaks assigned to oxy- and deoxyhemoglobin were used for the semiquantitative estimation of oMb deoxygenation that was found to be of approximately 50[Formula: see text] under hypoxia conditions.


Asunto(s)
Citocromos/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Espectrometría Raman , Animales , Citocromos/química , Hipoxia/metabolismo , Técnicas In Vitro , Masculino , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , Ratas
17.
PLoS One ; 7(9): e41990, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957018

RESUMEN

This paper presents a nonivasive approach to study redox state of reduced cytochromes c, c1 and b of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes c, c1 and b. The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes c, c1 and b in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes c, c1 and b in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome c in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data.


Asunto(s)
Citocromos/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Espectrometría Raman/métodos , Animales , Peróxido de Hidrógeno/química , Radical Hidroxilo , Potenciales de la Membrana , Microscopía Fluorescente/métodos , Modelos Estadísticos , Miocitos Cardíacos/citología , Estrés Oxidativo , Ratas , Factores de Tiempo
18.
Biophys J ; 97(12): 3206-14, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20006958

RESUMEN

The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples containing erythrocytes in their normal physiological environment in a mixture of colloid solution with silver nanoparticles and the procedure for the optimization of SERS conditions to achieve high signal enhancement without affecting the properties of living erythrocytes. By means of three independent techniques, we demonstrate that under the proposed conditions a colloid solution of silver nanoparticles does not affect the properties of erythrocytes. For the first time to our knowledge, we describe how to use the SERS-RS approach to study two populations of hemoglobin molecules inside an intact living erythrocyte: submembrane and cytosolic hemoglobin (Hb(sm) and Hb(c)). We show that the conformation of Hb(sm) differs from the conformation of Hb(c). This finding has an important application, as the comparative study of Hb(sm) and Hb(c) could be successfully used in biomedical research and diagnostic tests.


Asunto(s)
Eritrocitos/química , Espectrometría Raman , Animales , Supervivencia Celular , Citosol/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Oro/química , Oro/farmacología , Hemoglobinas/química , Hemoglobinas/metabolismo , Masculino , Nanopartículas del Metal , Ratas , Ratas Wistar , Procesamiento de Señales Asistido por Computador , Propiedades de Superficie
19.
Chirality ; 21 Suppl 1: E307-12, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20049977

RESUMEN

The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb. The SERRS measurements careful optimization, with respect to the concentration and volume ratio of the analyte to colloids, enables for the first time SERROA of this molecule. We observed that the most intense SERROA signals were attributed the nu(4), nu(20), and nu(21) vibrations, which are sensitive to the redox state of the heme's iron ion, and to the presence of its sixth site, bound to exogenous ligand; O(2), NO or CO. However, in this study, the SERROA signals corresponding to these vibrations appear more sensitive to the Hb oxygen-binding properties than they appear in the SERRS or RRS. Moreover, the SERROA signal of Hb has successfully been monitored as a function of time, and was observed to be stable for 4-5 min. To our knowledge, the SERROA results of Hb, and its comparison to SERRS and RRS, are here reported for the first time.


Asunto(s)
Hemoglobinas/análisis , Proyectos de Investigación , Espectrometría Raman/métodos , Animales , Coloides , Hemo/química , Hemoglobinas/química , Masculino , Rotación Óptica , Oxidación-Reducción , Ratas , Ratas Wistar , Vibración
20.
J Biomed Opt ; 13(3): 034004, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18601549

RESUMEN

We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes.


Asunto(s)
Eritrocitos/citología , Aumento de la Imagen/métodos , Interferometría/métodos , Microscopía Confocal/métodos , Microscopía de Contraste de Fase/métodos , Tomografía de Coherencia Óptica/métodos , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...