Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496488

RESUMEN

Optimal treatments depend on numerous factors such as drug chemical properties, disease biology, and patient characteristics to which the treatment is applied. To realize the promise of AI in healthcare, there is a need for designing systems that can capture patient heterogeneity and relevant biomedical knowledge. Here we present PlaNet, a geometric deep learning framework that reasons over population variability, disease biology, and drug chemistry by representing knowledge in the form of a massive clinical knowledge graph that can be enhanced by language models. Our framework is applicable to any sub-population, any drug as well drug combinations, any disease, and to a wide range of pharmacological tasks. We apply the PlaNet framework to reason about outcomes of clinical trials: PlaNet predicts drug efficacy and adverse events, even for experimental drugs and their combinations that have never been seen by the model. Furthermore, PlaNet can estimate the effect of changing population on the trial outcome with direct implications on patient stratification in clinical trials. PlaNet takes fundamental steps towards AI-guided clinical trials design, offering valuable guidance for realizing the vision of precision medicine using AI.

2.
Nat Methods ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366243

RESUMEN

Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, interspecies genomic differences limit the joint analysis of cross-species datasets to homologous genes. Here we present SATURN, a deep learning method for learning universal cell embeddings that encodes genes' biological properties using protein language models. By coupling protein embeddings from language models with RNA expression, SATURN integrates datasets profiled from different species regardless of their genomic similarity. SATURN can detect functionally related genes coexpressed across species, redefining differential expression for cross-species analysis. Applying SATURN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets, we show that SATURN can effectively transfer annotations across species, even when they are evolutionarily remote. We also demonstrate that SATURN can be used to find potentially divergent gene functions between glaucoma-associated genes in humans and four other species.

3.
Nature ; 619(7970): 572-584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468586

RESUMEN

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Asunto(s)
Intestinos , Análisis de la Célula Individual , Humanos , Diferenciación Celular/genética , Cromatina/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/inmunología , Análisis de Expresión Génica de una Sola Célula
4.
Science ; 380(6650): eadg0934, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319212

RESUMEN

Aging is characterized by a decline in tissue function, but the underlying changes at cellular resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas, a single-nucleus transcriptomic map of the whole aging Drosophila. We characterized 163 distinct cell types and performed an in-depth analysis of changes in tissue cell composition, gene expression, and cell identities. We further developed aging clock models to predict fly age and show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging features, we find distinctive cell type-specific aging patterns. This atlas provides a valuable resource for studying fundamental principles of aging in complex organisms.


Asunto(s)
Envejecimiento , Senescencia Celular , Drosophila melanogaster , Animales , Envejecimiento/genética , Perfilación de la Expresión Génica , Transcriptoma , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Atlas como Asunto
5.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36778387

RESUMEN

Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, inter-species genomic differences limit the joint analysis of cross-species datasets to homologous genes. Here, we present SATURN, a deep learning method for learning universal cell embeddings that encodes genes' biological properties using protein language models. By coupling protein embeddings from language models with RNA expression, SATURN integrates datasets profiled from different species regardless of their genomic similarity. SATURN has a unique ability to detect functionally related genes co-expressed across species, redefining differential expression for cross-species analysis. We apply SATURN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets. We show that cell embeddings learnt in SATURN can be effectively used to transfer annotations across species and identify both homologous and species-specific cell types, even across evolutionarily remote species. Finally, we use SATURN to reannotate the five species Cell Atlas of Human Trabecular Meshwork and Aqueous Outflow Structures and find evidence of potentially divergent functions between glaucoma associated genes in humans and other species.

6.
Pac Symp Biocomput ; 28: 55-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540964

RESUMEN

The following sections are included: Introduction, Understanding and Predicting Molecular Networks, Understanding and Predicting Molecular Networks, Making Use of Family Structure, Applying Traditional Graph Algorithms to Novel Tasks, Representing Uncertainty in Networks, Conclusion, References.


Asunto(s)
Algoritmos , Biología Computacional , Humanos
7.
Nat Methods ; 19(11): 1411-1418, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280720

RESUMEN

Accurate cell-type annotation from spatially resolved single cells is crucial to understand functional spatial biology that is the basis of tissue organization. However, current computational methods for annotating spatially resolved single-cell data are typically based on techniques established for dissociated single-cell technologies and thus do not take spatial organization into account. Here we present STELLAR, a geometric deep learning method for cell-type discovery and identification in spatially resolved single-cell datasets. STELLAR automatically assigns cells to cell types present in the annotated reference dataset and discovers novel cell types and cell states. STELLAR transfers annotations across different dissection regions, different tissues and different donors, and learns cell representations that capture higher-order tissue structures. We successfully applied STELLAR to CODEX multiplexed fluorescent microscopy data and multiplexed RNA imaging datasets. Within the Human BioMolecular Atlas Program, STELLAR has annotated 2.6 million spatially resolved single cells with dramatic time savings.


Asunto(s)
Análisis de la Célula Individual , Humanos , Microscopía Fluorescente
8.
Elife ; 112022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442190

RESUMEN

Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Células Quimiorreceptoras/metabolismo , Drosophila melanogaster/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
9.
Science ; 375(6584): eabk2432, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239393

RESUMEN

For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Transcriptoma , Animales , Núcleo Celular/metabolismo , Bases de Datos Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genes de Insecto , Masculino , RNA-Seq , Caracteres Sexuales , Análisis de la Célula Individual , Factores de Transcripción/genética
10.
Nat Commun ; 12(1): 5556, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548483

RESUMEN

Single cell technologies are rapidly generating large amounts of data that enables us to understand biological systems at single-cell resolution. However, joint analysis of datasets generated by independent labs remains challenging due to a lack of consistent terminology to describe cell types. Here, we present OnClass, an algorithm and accompanying software for automatically classifying cells into cell types that are part of the controlled vocabulary that forms the Cell Ontology. A key advantage of OnClass is its capability to classify cells into cell types not present in the training data because it uses the Cell Ontology graph to infer cell type relationships. Furthermore, OnClass can be used to identify marker genes for all the cell ontology categories, regardless of whether the cell types are present or absent in the training data, suggesting that OnClass goes beyond a simple annotation tool for single cell datasets, being the first algorithm capable to identify marker genes specific to all terms of the Cell Ontology and offering the possibility of refining the Cell Ontology using a data-centric approach.


Asunto(s)
Linaje de la Célula/genética , Células Eucariotas/clasificación , Programas Informáticos , Terminología como Asunto , Vocabulario Controlado , Algoritmos , Animales , Biomarcadores/metabolismo , Conjuntos de Datos como Asunto , Expresión Génica , Humanos
11.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33555999

RESUMEN

Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Neuronas Receptoras Olfatorias/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Femenino , Masculino , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Olfato , Transcriptoma
12.
Elife ; 102021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33427646

RESUMEN

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.


Asunto(s)
Drosophila melanogaster/metabolismo , Neuritas/metabolismo , Nervio Olfatorio/metabolismo , Transcriptoma , Animales , Análisis de la Célula Individual , Factores de Tiempo
13.
Nat Methods ; 17(12): 1200-1206, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33077966

RESUMEN

Although tremendous effort has been put into cell-type annotation, identification of previously uncharacterized cell types in heterogeneous single-cell RNA-seq data remains a challenge. Here we present MARS, a meta-learning approach for identifying and annotating known as well as new cell types. MARS overcomes the heterogeneity of cell types by transferring latent cell representations across multiple datasets. MARS uses deep learning to learn a cell embedding function as well as a set of landmarks in the cell embedding space. The method has a unique ability to discover cell types that have never been seen before and annotate experiments that are as yet unannotated. We apply MARS to a large mouse cell atlas and show its ability to accurately identify cell types, even when it has never seen them before. Further, MARS automatically generates interpretable names for new cell types by probabilistically defining a cell type in the embedding space.


Asunto(s)
Células/clasificación , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Algoritmos , Animales , Bases de Datos Factuales , Perfilación de la Expresión Génica , Ratones , ARN/genética , Análisis de Secuencia de ARN , Programas Informáticos
14.
Sci Data ; 7(1): 170, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503990

RESUMEN

A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients.


Asunto(s)
Archaea/genética , Bacterias/genética , Fenotipo , Ecosistema , Genoma Arqueal , Genoma Bacteriano
15.
IEEE Trans Cybern ; 50(4): 1711-1725, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30561362

RESUMEN

In many applications, high-dimensional data points can be well represented by low-dimensional subspaces. To identify the subspaces, it is important to capture a global and local structure of the data which is achieved by imposing low-rank and sparseness constraints on the data representation matrix. In low-rank sparse subspace clustering (LRSSC), nuclear and l1 -norms are used to measure rank and sparsity. However, the use of nuclear and l1 -norms leads to an overpenalized problem and only approximates the original problem. In this paper, we propose two l0 quasi-norm-based regularizations. First, this paper presents regularization based on multivariate generalization of minimax-concave penalty (GMC-LRSSC), which contains the global minimizers of a l0 quasi-norm regularized objective. Afterward, we introduce the Schatten-0 ( S0 ) and l0 -regularized objective and approximate the proximal map of the joint solution using a proximal average method ( S0/l0 -LRSSC). The resulting nonconvex optimization problems are solved using an alternating direction method of multipliers with established convergence conditions of both algorithms. Results obtained on synthetic and four real-world datasets show the effectiveness of GMC-LRSSC and S0/l0 -LRSSC when compared to state-of-the-art methods.

16.
Nucleic Acids Res ; 44(21): 10074-10090, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27915291

RESUMEN

Bacteria and Archaea display a variety of phenotypic traits and can adapt to diverse ecological niches. However, systematic annotation of prokaryotic phenotypes is lacking. We have therefore developed ProTraits, a resource containing ∼545 000 novel phenotype inferences, spanning 424 traits assigned to 3046 bacterial and archaeal species. These annotations were assigned by a computational pipeline that associates microbes with phenotypes by text-mining the scientific literature and the broader World Wide Web, while also being able to define novel concepts from unstructured text. Moreover, the ProTraits pipeline assigns phenotypes by drawing extensively on comparative genomics, capturing patterns in gene repertoires, codon usage biases, proteome composition and co-occurrence in metagenomes. Notably, we find that gene synteny is highly predictive of many phenotypes, and highlight examples of gene neighborhoods associated with spore-forming ability. A global analysis of trait interrelatedness outlined clusters in the microbial phenotype network, suggesting common genetic underpinnings. Our extended set of phenotype annotations allows detection of 57 088 high confidence gene-trait links, which recover many known associations involving sporulation, flagella, catalase activity, aerobicity, photosynthesis and other traits. Over 99% of the commonly occurring gene families are involved in genetic interactions conditional on at least one phenotype, suggesting that epistasis has a major role in shaping microbial gene content.


Asunto(s)
Archaea/genética , Bacterias/genética , Bases de Datos Genéticas , Fenotipo , Codón , Biología Computacional/métodos , Minería de Datos , Genes Arqueales , Genes Bacterianos , Genoma Arqueal , Genoma Bacteriano , Metagenoma , Anotación de Secuencia Molecular , Herencia Multifactorial , Reproducibilidad de los Resultados
17.
Genome Biol Evol ; 7(6): 1519-32, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25971281

RESUMEN

The amino acid composition (AAC) of proteomes differs greatly between microorganisms and is associated with the environmental niche they inhabit, suggesting that these changes may be adaptive. Similarly, the oligonucleotide composition of genomes varies and may confer advantages at the DNA/RNA level. These influences overlap in protein-coding sequences, making it difficult to gauge their relative contributions. We disentangle these effects by systematically evaluating the correspondence between intergenic nucleotide composition, where protein-level selection is absent, the AAC, and ecological parameters of 909 prokaryotes. We find that G + C content, the most frequently used measure of genomic composition, cannot capture diversity in AAC and across ecological contexts. However, di-/trinucleotide composition in intergenic DNA predicts amino acid frequencies of proteomes to the point where very little cross-species variability remains unexplained (91% of variance accounted for). Qualitatively similar results were obtained for 49 fungal genomes, where 80% of the variability in AAC could be explained by the composition of introns and intergenic regions. Upon factoring out oligonucleotide composition and phylogenetic inertia, the residual AAC is poorly predictive of the microbes' ecological preferences, in stark contrast with the original AAC. Moreover, highly expressed genes do not exhibit more prominent environment-related AAC signatures than lowly expressed genes, despite contributing more to the effective proteome. Thus, evolutionary shifts in overall AAC appear to occur almost exclusively through factors shaping the global oligonucleotide content of the genome. We discuss these results in light of contravening evidence from biophysical data and further reading frame-specific analyses that suggest that adaptation takes place at the protein level.


Asunto(s)
Genoma Microbiano , Proteoma/química , Aminoácidos/análisis , Composición de Base , ADN Intergénico/química , Genoma Fúngico , Genómica , Nucleótidos/análisis , Oligonucleótidos/análisis , Filogenia , Proteínas/genética , Proteínas/metabolismo , Sistemas de Lectura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA