RESUMEN
Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in non-image-forming visual functions. Given their significant loss observed in various ocular degenerative diseases at early stages, this study aimed to assess changes in both the morphology and associated behavioral functions of ipRGCs in mice between 6 (mature) and 12 (late adult) months old. The findings contribute to understanding the preservation of ipRGCs in late adults and their potential as a biomarker for early ocular degenerative diseases. Methods: Female and male C57BL/6J mice were used to assess the behavioral consequences of aging to mature and old adults, including pupillary light reflex, light aversion, visual acuity, and contrast sensitivity. Immunohistochemistry on retinal wholemounts from these mice was then conducted to evaluate ipRGC dendritic morphology in the ganglion cell layer (GCL) and inner nuclear layer (INL). Results: Morphological analysis showed that ipRGC dendritic field complexity was remarkably stable through 12 months old of age. Similarly, the pupillary light reflex, visual acuity, and contrast sensitivity were stable in mature and old adults. Although alterations were observed in ipRGC-independent light aversion distinct from the pupillary light reflex, aged wild-type mice continuously showed enhanced light aversion with dilation. No effect of sex was observed in any tests. Conclusions: The preservation of both ipRGC morphology and function highlights the potential of ipRGC-mediated function as a valuable biomarker for ocular diseases characterized by early ipRGC loss. The consistent stability of ipRGCs in mature and old adult mice suggests that detected changes in ipRGC-mediated functions could serve as early indicators or diagnostic tools for early-onset conditions such as Alzheimer's disease, Parkinson's disease, and diabetes, where ipRGC loss has been documented.
Asunto(s)
Retina , Células Ganglionares de la Retina , Femenino , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Agudeza Visual , BiomarcadoresRESUMEN
Increasing spike rates drive greater neuronal energy demand. In turn, mitochondrial ATP production leads to the generation of reactive oxygen species (ROS) that can modulate ion channel gating. Does ROS production autoregulate the excitability of a neuron? We investigated the links between retinal ganglion cell (RGC) excitability and spike activity-driven ROS production in male and female mice. Changes to the light-evoked and current-evoked spike patterns of functionally identified αRGC subtypes, along with their NaV channel-gating properties, were recorded during experimentally induced decreases and increases of intracellular ROS. During periods of highest spike rates (e.g., following light onset in ON sustained RGCs and light offset in OFF sustained RGCs), these αRGC subtypes responded to reductions of ROS (induced by catalase or glutathione monoethyl ester) with higher spike rates. Increases in ROS (induced by mercaptosuccinate, antimycin-A, or H2O2) lowered spike rates. In ON and OFF transient RGCs, there were no changes in spike rate during ROS decreases but increased ROS increased spiking. This suggests that endogenous ROS are intrinsic neuromodulators in RGCs having high metabolic demands but not in RGCs with lower energy needs. We identified ROS-induced shifts in the voltage-dependent gating of specific isoforms of NaV channels that account for the modulation of ON and OFF sustained RGC spike frequency by ROS-mediated feedback. ROS-induced changes to NaV channel gating, affecting activation and inactivation kinetics, are consistent with the differing spike pattern alterations observed in RGC subtypes. Cell-autonomous generation of ROS during spiking contributes to tuning the spike patterns of RGCs.SIGNIFICANCE STATEMENT Energy production within retinal ganglion cells (RGCs) is accompanied by metabolic by-products harmful to cellular function. How these by-products modulate the excitability of RGCs bears heavily on visual function and the etiology of optic neuropathies. A novel hypothesis of how RGC metabolism can produce automodulation of electrical signaling was tested by identifying the characteristics and biophysical origins of changes to the excitability of RGCs caused by oxidizing by-products in the retina. This impacts our understanding of the pathophysiology of RGC dysfunction, supporting an emerging model in which increases in oxidizing chemical species during energy production, but not necessarily bioenergetic failure, lead to preferential degeneration of specific subtypes of RGCs, yielding loss of different aspects of visual capacity.
Asunto(s)
Peróxido de Hidrógeno , Células Ganglionares de la Retina , Ratones , Femenino , Masculino , Animales , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina/fisiología , Retina , Transducción de SeñalRESUMEN
Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten +/- retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson's, and Alzheimer's diseases.
RESUMEN
How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it's being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl- and HCO3 - permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3 - efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.
RESUMEN
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
RESUMEN
Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.
Asunto(s)
Astrocitos/ultraestructura , Encéfalo/ultraestructura , Microglía/ultraestructura , Neuronas/ultraestructura , Células Horizontales de la Retina/ultraestructura , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Mutación del Sistema de Lectura/genética , Proteínas Fluorescentes Verdes/genética , Integrasas , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Repeticiones de Microsatélite/genética , Neuronas/metabolismo , Neuronas/patología , Células Horizontales de la Retina/metabolismo , Células Horizontales de la Retina/patologíaRESUMEN
Structural changes in pre and postsynaptic neurons that accompany synapse formation often temporally and spatially overlap. Thus, it has been difficult to resolve which processes drive patterned connectivity. To overcome this, we use the laminated outer murine retina. We identify the serine/threonine kinase LKB1 as a key driver of synapse layer emergence. The absence of LKB1 in the retina caused a marked mislocalization and delay in synapse layer formation. In parallel, LKB1 modulated postsynaptic horizontal cell refinement and presynaptic photoreceptor axon growth. Mislocalized horizontal cell processes contacted aberrant cone axons in LKB1 mutants. These defects coincided with altered synapse protein organization, and horizontal cell neurites were misdirected to ectopic synapse protein regions. Together, these data suggest that LKB1 instructs the timing and location of connectivity in the outer retina via coordinate regulation of pre and postsynaptic neuron structure and the localization of synapse-associated proteins.
Asunto(s)
Neuritas/enzimología , Neurogénesis , Células Fotorreceptoras/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/enzimología , Proteínas Quinasas Activadas por AMP , Animales , Femenino , Masculino , Ratones Noqueados , Mutación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteína 1 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
Despite robust effects on immature neurons, growth factors minimally promote axon regeneration in the adult central nervous system (CNS). Attempting to improve growth-factor responsiveness in mature neurons by dedifferentiation, we overexpressed Lin28 in the retina. Lin28-treated retinas responded to insulin-like growth factor-1 (IGF1) by initiating retinal ganglion cell (RGC) axon regeneration after axotomy. Surprisingly, this effect was cell non-autonomous. Lin28 expression was required only in amacrine cells, inhibitory neurons that innervate RGCs. Ultimately, we found that optic-nerve crush pathologically upregulated activity in amacrine cells, which reduced RGC electrical activity and suppressed growth-factor signaling. Silencing amacrine cells or pharmacologically blocking inhibitory neurotransmission also induced IGF1 competence. Remarkably, RGCs regenerating across these manipulations localized IGF1 receptor to their primary cilia, which maintained their signaling competence and regenerative ability. Thus, our results reveal a circuit-based mechanism that regulates CNS axon regeneration and implicate primary cilia as a regenerative signaling hub.
Asunto(s)
Axones/fisiología , Factor de Crecimiento Nervioso/fisiología , Regeneración Nerviosa/fisiología , Receptores Presinapticos/fisiología , Células Amacrinas/fisiología , Animales , Cilios/metabolismo , Cilios/ultraestructura , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Traumatismos del Nervio Óptico/patología , Proteínas de Unión al ARN/genética , Receptor IGF Tipo 1/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacosRESUMEN
The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.
Asunto(s)
Células Fotorreceptoras de Vertebrados/fisiología , Células Horizontales de la Retina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología , Animales , Canales de Calcio/metabolismo , Retroalimentación , Retroalimentación Fisiológica/fisiología , Femenino , Cobayas , Concentración de Iones de Hidrógeno , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de GABA/metabolismo , Retina/citología , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiologíaRESUMEN
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Asunto(s)
Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Ratones , Ratones Transgénicos , Péptido Intestinal Vasoactivo/metabolismo , Vías Visuales/citología , Vías Visuales/metabolismoRESUMEN
Genetic manipulation of horizontal cells using a Connexin57-iCre mouse (Cx57-iCre) line combined with calcium imaging is proving to be a valuable method to study horizontal cell feedback inhibition onto photoreceptor terminals. While it is accepted that horizontal cells provide lateral inhibitory feedback to photoreceptors, the cellular mechanisms that underlie this feedback inhibition remain only partially elucidated. Feedback inhibition of photoreceptors acts via modulation of their voltage-gated calcium channels at their synaptic terminal. Calcium imaging of photoreceptors in retinal slices, therefore, reflects the impact of inhibitory feedback from horizontal cells. The development of a Cx57-iCre mouse line permits genetic manipulation of horizontal cells. In wild-type mouse retina, depolarization of horizontal cells by kainate provokes a decrease in photoreceptor Ca2+i, whereas hyperpolarization by NBQX elicits an increase in photoreceptor Ca2+i. These responses indicate increased feedback inhibition occurred when horizontal cells are depolarized, and decreased feedback inhibition, when hyperpolarized. This system was used to test the role of GABA release from horizontal cells in feedback inhibition by the selective elimination of VGAT/VIAAT, the inhibitory amino acid transmitter transporter that loads GABA into the synaptic vesicles of horizontal cells. Combined with calcium imaging of photoreceptors in retinal slices, the knockout of specific proteins, e.g., VGAT, provides a robust technique to test the role of GABA in feedback inhibition by horizontal cells.
Asunto(s)
Retroalimentación Fisiológica/fisiología , Imagen Molecular/métodos , Imagen Óptica/métodos , Células Fotorreceptoras de Vertebrados/fisiología , Células Horizontales de la Retina/fisiología , Animales , Calcio/química , Calcio/metabolismo , Canales de Calcio/metabolismo , Conexinas/genética , Retroalimentación Fisiológica/efectos de los fármacos , Inmunohistoquímica/instrumentación , Inmunohistoquímica/métodos , Ácido Kaínico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Imagen Molecular/instrumentación , Imagen Óptica/instrumentación , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Quinoxalinas/farmacología , Células Horizontales de la Retina/efectos de los fármacosRESUMEN
The vertebrate retina has the remarkable ability to support visual function under conditions of limited illumination, including the processing of signals evoked by single photons. Dim-light vision is regulated by several adaptive mechanisms. The mechanism explored in this study is responsible for increasing the light sensitivity and operational range of rod bipolar cells, the retinal neurons operating immediately downstream of rod photoreceptors. This sensitization is achieved through the sustained dopamine-dependent GABA release from other retinal neurons. Our goals were to identify the cell type responsible for the GABA release and the site of its modulation by dopamine. Previous studies have suggested the involvement of amacrine and/or horizontal cells. We now demonstrate, using mice of both sexes, that horizontal cells do not participate in this mechanism. Instead, sustained GABA input is provided by a subpopulation of wide-field amacrine cells, which stimulate the GABAC receptors at rod bipolar cell axons. We also found that dopamine does not act directly on either of these cells. Rather, it suppresses inhibition imposed on these wide-field cells by another subpopulation of upstream GABAergic amacrine cells, thereby sustaining the GABAC receptor activation required for rod bipolar cell sensitization.SIGNIFICANCE STATEMENT The vertebrate retina has an exquisite ability to adjust information processing to ever-changing conditions of ambient illumination, from bright sunlight to single-photon counting under dim starlight. Operation under each of these functional regimes requires an engagement of specific adaptation mechanisms. Here, we describe a mechanism optimizing the performance of the dim-light channel of vision, which consists of sensitizing rod bipolar cells by a sustained GABAergic input originating from a population of wide-field amacrine cells. Wide-field amacrine cells span large segments of the retina, making them uniquely equipped to normalize and optimize response sensitivity across distant receptive fields and preclude any bias toward local light-intensity fluctuations.
Asunto(s)
Células Amacrinas/metabolismo , Dopamina/metabolismo , Células Bipolares de la Retina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
The transcription factor Prox1 is expressed in multiple cells in the retina during eye development. This study has focused on neuronal Prox1 expression in the inner nuclear layer (INL) of the adult mouse retina. Prox1 immunostaining was evaluated in vertical retinal sections and whole mount preparations using a specific antibody directed to the C-terminus of Prox1. Strong immunostaining was observed in numerous amacrine cell bodies and in all horizontal cell bodies in the proximal and distal INL, respectively. Some bipolar cells were also weakly immunostained. Prox1-immunoreactive amacrine cells expressed glycine, and they formed 35 ± 3% of all glycinergic amacrine cells. Intracellular Neurobiotin injections into AII amacrine cells showed that all gap junction-coupled AII amacrine cells express Prox1, and no other Prox1-immunostained amacrine cells were in the immediate area surrounding the injected AII amacrine cell. Prox1-immunoreactive amacrine cell bodies were distributed across the retina, with their highest density (3887 ± 160 cells/mm2) in the central retina, 0.5 mm from the optic nerve head, and their lowest density (3133 ± 350 cells/mm2) in the mid-peripheral retina, 2 mm from the optic nerve head. Prox1-immunoreactive amacrine cell bodies comprised ~9.8% of the total amacrine cell population, and they formed a non-random mosaic with a regularity index (RI) of 3.4, similar to AII amacrine cells in the retinas of other mammals. Together, these findings indicate that AII amacrine cells are the predominant and likely only amacrine cell type strongly expressing Prox1 in the adult mouse retina, and establish Prox1 as a marker of AII amacrine cells.
RESUMEN
KEY POINTS: Large conductance, Ca2+ -activated K+ (BKCa ) channels play important roles in mammalian retinal neurons, including photoreceptors, bipolar cells, amacrine cells and ganglion cells, but they have not been identified in horizontal cells. BKCa channel blockers paxilline and iberiotoxin, as well as Ca2+ free solutions and divalent cation Cav channel blockers, eliminate the outwardly rectifying current, while NS1619 enhances it. In symmetrical 150 mm K+ , single channels had a conductance close to 250 pS, within the range of all known BKCa channels. In current clamped horizontal cells, BKCa channels subdue depolarizing membrane potential excursions, reduce the average resting potential and decrease oscillations. The results show that BKCa channel activation puts a ceiling on horizontal cell depolarization and regulates the temporal responsivity of the cells. ABSTRACT: Large conductance, calcium-activated potassium (BKCa ) channels have numerous roles in neurons including the regulation of membrane excitability, intracellular [Ca2+ ] regulation, and neurotransmitter release. In the retina, they have been identified in photoreceptors, bipolar cells, amacrine cells and ganglion cells, but have not been conclusively identified in mammalian horizontal cells. We found that outward current recorded between -30 and +60 mV is carried primarily in BKCa channels in isolated horizontal cells of rats and mice. Whole-cell outward currents were maximal at +50 mV and declined at membrane potentials positive to this value. This current was eliminated by the selective BKCa channel blocker paxilline (100 nm), iberiotoxin (10 µm), Ca2+ free solutions and divalent cation Cav channel blockers. It was activated by the BKCa channel activator NS1619 (30 µm). Single channel recordings revealed the conductance of the channels to be 244 ± 11 pS (n = 17; symmetrical 150 mm K+ ) with open probability being both voltage- and Ca2+ -dependent. The channels showed fast activation kinetics in response to Ca2+ influx and inactivation gating that could be modified by intracellular protease treatment, which suggests ß subunit involvement. Under current clamp, block of BKCa current increased depolarizing membrane potential excursions, raising the average resting potential and producing oscillations. BKCa current activation with NS1619 inhibited oscillations and hyperpolarized the resting potential. These effects underscore the functional role of BKCa current in limiting depolarization of the horizontal cell membrane potential and suggest actions of these channels in regulating the temporal responsivity of the cells.
Asunto(s)
Potenciales de Acción , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas Retinianas/metabolismo , Animales , Bencimidazoles , Células Cultivadas , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Neuronas Retinianas/fisiologíaRESUMEN
The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.
Asunto(s)
Luz , Trastornos Migrañosos/fisiopatología , Traumatismos del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/fisiología , Ganglio del Trigémino/fisiología , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Migrañosos/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Opsinas de Bastones/metabolismo , Ganglio del Trigémino/metabolismoRESUMEN
In this study we first sought to determine whether RNA-binding protein with multiple splicing (RBPMS) can serve as a specific marker for cat retina ganglion cells (RGCs) using retrograde labeling and immunohistochemistry staining. RBPM was then used as an RGC marker to study RGC survival after optic nerve crush (ONC) and alpha-lipoic acid (ALA) treatment in cats. ALA treatment yielded a peak density of RBPMS-alpha cells within the peak isodensity zone (>60/mm2) which did not differ from ONC retinas. The area within the zone was significantly enlarged (control: 2.3%, ONC: 0.06%, ONC+ALA: 0.1%). As for the 10-21/mm2 zone, ALA treatment resulted in a significant increase in area (control: 34.5%, ONC: 12.1%, ONC+ALA: 35.9%). ALA can alleviate crush-induced RGC injury.
Asunto(s)
Citoprotección/efectos de los fármacos , Compresión Nerviosa , Nervio Óptico/citología , Nervio Óptico/cirugía , Proteínas de Unión al ARN/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Ácido Tióctico/farmacología , Animales , Biomarcadores/metabolismo , Gatos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismoRESUMEN
Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 µM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 µM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 µM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 µM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gßγ-blocking peptide suggested involvement of Gßγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gßγ proteins in horizontal cells.
Asunto(s)
Canales de Calcio/fisiología , Potenciales de la Membrana/fisiología , Receptores de Dopamina D1/metabolismo , Células Horizontales de la Retina/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Conexinas/genética , Conexinas/metabolismo , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Retina/citología , Células Horizontales de la Retina/efectos de los fármacos , Espiperona/farmacología , omega-Conotoxina GVIA/farmacologíaRESUMEN
The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGAT(flox/flox) mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT(-/-) mice were the same as Cx57-VGAT(+/+) controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT(-/-) mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT(-/-) mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors.
Asunto(s)
Canales de Calcio/metabolismo , Retroalimentación Fisiológica/fisiología , Células Fotorreceptoras/metabolismo , Células Horizontales de la Retina/fisiología , Eliminación de Secuencia/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/deficiencia , Animales , Conexinas/genética , Conexinas/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Agonistas de Receptores de GABA-A/farmacología , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Ácido Kaínico/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Muscimol/farmacología , Retina/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Vías Visuales/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacologíaRESUMEN
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain.
Asunto(s)
Células Amacrinas/fisiología , Dopamina/metabolismo , Inhibición Neural/fisiología , Retina/citología , Células Ganglionares de la Retina/fisiología , Vías Visuales/fisiología , Células Amacrinas/efectos de los fármacos , Amidas/farmacología , Animales , Calcio/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , GABAérgicos/farmacología , Técnicas In Vitro , Indoles/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Estimulación Luminosa , Piperidinas/farmacología , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Somatostatina/agonistas , Somatostatina/antagonistas & inhibidores , Somatostatina/metabolismoRESUMEN
Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.