Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 134(3): 269-289, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174557

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS: EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1ß activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS: Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS: Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.


Asunto(s)
Aterosclerosis , Vesículas Extracelulares , MicroARNs , Humanos , Células Endoteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular , Aterosclerosis/metabolismo
2.
J Fungi (Basel) ; 7(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375204

RESUMEN

Chromoblastomycosis (CBM) is a neglected, chronic, and progressive subcutaneous mycosis caused by different species of fungi from the Herpotrichiellaceae family. CBM disease is usually associated with agricultural activities, and its infection is characterized by verrucous, erythematous papules, and atrophic lesions on the upper and lower limbs, leading to social stigma and impacts on patients' welfare. The economic aspect of disease treatment is another relevant issue. There is no specific treatment for CBM, and different anti-fungal drug associations are used to treat the patients. However, the long period of the disease and the high cost of the treatment lead to treatment interruption and, consequently, relapse of the disease. In previous years, great progress had been made in the comprehension of the CBM pathophysiology. In this review, we discuss the differences in the cell wall composition of conidia, hyphae, and muriform cells, with a particular focus on the activation of the host immune response. We also highlight the importance of studies about the host skin immunology in CBM. Finally, we explore different immunotherapeutic studies, highlighting the importance of these approaches for future treatment strategies for CBM.

3.
Artículo en Inglés | MEDLINE | ID: mdl-29568732

RESUMEN

Leptospirosis is considered one of the most important zoonosis worldwide. The activation of the Complement System is important to control dissemination of several pathogens in the host. Only a few studies have employed murine models to investigate leptospiral infection and our aim in this work was to investigate the role of murine C5 during in vivo infection, comparing wild type C57BL/6 (B6 C5+/+) and congenic C57BL/6 (B6 C5-/-, C5 deficient) mice during the first days of infection. All animals from both groups survived for at least 8 days post-infection with pathogenic Leptospira interrogans serovar Kennewicki strain Fromm (LPF). At the third day of infection, we observed greater numbers of LPF in the liver of B6 C5-/- mice when compared to B6 C5+/+ mice. Later, on the sixth day of infection, the LPF population fell to undetectable levels in the livers of both groups of mice. On the third day, the inflammatory score was higher in the liver of B6 C5+/+ mice than in B6 C5-/- mice, and returned to normal on the sixth day of infection in both groups. No significant histopathological differences were observed in the lung, kidney and spleen from both infected B6 C5+/+ than B6 C5-/- mice. Likewise, the total number of circulating leukocytes was not affected by the absence of C5. The liver levels of IL-10 on the sixth day of infection was lower in the absence of C5 when compared to wild type mice. No significant differences were observed in the levels of several inflammatory cytokines when B6 C5+/+ and B6 C5-/- were compared. In conclusion, C5 may contribute to the direct killing of LPF in the first days of infection in C57BL/6 mice. On the other hand, other effector immune mechanisms probably compensate Complement impairment since the mice survival was not affected by the absence of C5 and its activated fragments, at least in the early stage of this infection.


Asunto(s)
Complemento C5/inmunología , Complemento C5/fisiología , Leptospira interrogans/inmunología , Leptospira interrogans/patogenicidad , Leptospirosis/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/inmunología , Interleucina-10 , Riñón/inmunología , Riñón/patología , Leptospirosis/sangre , Leptospirosis/patología , Leucocitos , Hígado/inmunología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Bazo/inmunología , Bazo/patología , Análisis de Supervivencia
4.
Front Immunol ; 8: 1849, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375550

RESUMEN

pH is highly variable in different tissues and affects many enzymatic reactions in neutrophils. In response to calcium ionophores such as A23187 and ionomycin, neutrophils undergo nicotinamide adenine dinucleotide phosphate oxidase (NOX)-independent neutrophil extracellular trap (NET) formation (NETosis). However, how pH influences calcium-dependent Nox-independent NET formation is not well understood. We hypothesized that increasing pH promotes Nox-independent NET formation by promoting calcium influx, mitochondrial reactive oxygen species (mROS) generation, histone citrullination, and histone cleavage. Here, we show that stimulating human neutrophils isolated from peripheral blood with calcium ionophore A23187 or ionomycin in the media with increasing extracellular pH (6.6, 6.8, 7.0, 7.2, 7.4, 7.8) drastically increases intracellular pH within in 10-20 min. These intracellular pH values are much higher compared to unstimulated cells placed in the media with corresponding pH values. Raising pH slightly drastically increases intracellular calcium concentration in resting and stimulated neutrophils, respectively. Like calcium, mROS generation also increases with increasing pH. An mROS scavenger, MitoTempo, significantly suppresses calcium ionophore-mediated NET formation with a greater effect at higher pH, indicating that mROS production is at least partly responsible for pH-dependent suppression of Nox-independent NETosis. In addition, raising pH increases PAD4 activity as determined by the citrullination of histone (CitH3) and histone cleavage determined by Western blots. The pH-dependent histone cleavage is reproducibly very high during ionomycin-induced NETosis compared to A23187-induced NETosis. Little or no histone cleavage was noted in unstimulated cells, at any pH. Both CitH3 and cleavage of histones facilitate DNA decondensation. Therefore, alkaline pH promotes intracellular calcium influx, mROS generation, PAD4-mediated CitH3 formation, histone 4 cleavage and eventually NET formation. Calcium-mediated NET formation and CitH3 formation are often related to sterile inflammation. Hence, understanding these important mechanistic steps helps to explain how pH regulates NOX-independent NET formation, and modifying pH may help to regulate NET formation during sterile inflammation or potential damage caused by compounds such as ionomycin, secreted by Streptomyces, a group of Gram-positive bacteria well known for producing antibiotics.

5.
Immunol Lett ; 173: 61-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26976804

RESUMEN

Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum.


Asunto(s)
Antígenos Bacterianos/metabolismo , Factor I de Complemento/metabolismo , Evasión Inmune , Leptospira/fisiología , Leptospirosis/inmunología , Antígenos Bacterianos/inmunología , Supervivencia Celular , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Factor H de Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Cadena Alimentaria , Humanos , Leptospira/patogenicidad , Unión Proteica
7.
PLoS Negl Trop Dis ; 9(10): e0004192, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517116

RESUMEN

The complement system consists of more than 40 proteins that participate in the inflammatory response and in pathogen killing. Complement inhibitors are necessary to avoid the excessive consumption and activation of this system on host cells. Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Pathogenic leptospires are able to escape from complement activation by binding to host complement inhibitors Factor H [FH] and C4b-binding protein (C4BP) while non-pathogenic leptospires are rapidly killed in the presence of fresh serum. In this study, we demonstrate that complement control protein domains (CCP) 7 and 8 of C4BP α-chain interact with the outer membrane proteins LcpA, LigA and LigB from the pathogenic leptospire L. interrogans. The interaction between C4BP and LcpA, LigA and LigB is sensitive to ionic strength and inhibited by heparin. We fine mapped the LigA and LigB domains involved in its binding to C4BP and heparin and found that both interactions are mediated through the bacterial immunoglobulin-like (Big) domains 7 and 8 (LigA7-8 and LigB7-8) of both LigA and LigB and also through LigB9-10. Therefore, C4BP and heparin may share the same binding sites on Lig proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteína de Unión al Complemento C4b/metabolismo , Interacciones Huésped-Patógeno , Leptospira interrogans/metabolismo , Mapeo de Interacción de Proteínas , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteína de Unión al Complemento C4b/inmunología , Humanos , Leptospira interrogans/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...