Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091406

RESUMEN

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Asunto(s)
Leishmaniasis Visceral , Leishmaniasis , Ratas , Animales , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Modelos Animales de Enfermedad
2.
Nat Commun ; 13(1): 6557, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450721

RESUMEN

Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.


Asunto(s)
Streptococcus pyogenes , Sulfametoxazol , Sulfametoxazol/farmacología , Antibacterianos/farmacología , Especificidad por Sustrato , Ácido Fólico
3.
Nat Commun ; 13(1): 5563, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36137996

RESUMEN

Decades of intense herbicide use has led to resistance in weeds. Without innovative weed management practices and new herbicidal modes of action, the unabated rise of herbicide resistance will undoubtedly place further stress upon food security. HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is the rate limiting enzyme of the eukaryotic mevalonate pathway successfully targeted by statins to treat hypercholesterolemia in humans. As HMGR inhibitors have been shown to be herbicidal, HMGR could represent a mode of action target for the development of herbicides. Here, we present the crystal structure of a HMGR from Arabidopsis thaliana (AtHMG1) which exhibits a wider active site than previously determined structures from different species. This plant conserved feature enables the rational design of specific HMGR inhibitors and we develop a tolerance trait through sequence analysis of fungal gene clusters. These results suggest HMGR to be a viable herbicide target modifiable to provide a tolerance trait.


Asunto(s)
Arabidopsis , Herbicidas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Acilcoenzima A , Arabidopsis/metabolismo , Herbicidas/farmacología , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico
4.
Plant Commun ; 3(4): 100322, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35605193

RESUMEN

Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.


Asunto(s)
Arabidopsis , Herbicidas , Antibacterianos/química , Antibacterianos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Carbamatos , Dihidropteroato Sintasa/química , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo , Herbicidas/farmacología , Sulfonamidas/química
5.
RSC Chem Biol ; 3(1): 37-43, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35128407

RESUMEN

The rise in herbicide resistance over recent decades threatens global agriculture and food security and so discovery of new modes of action is increasingly important. Here we reveal linezolid, an oxazolidinone antibiotic that inhibits microbial translation, is also herbicidal. To validate the herbicidal mode of action of linezolid we confirmed its micromolar inhibition is specific to chloroplast translation and did not affect photosynthesis directly. To assess the herbicide potential of linezolid, testing against a range of weed and crop species found it effective pre- and post-emergence. Using structure-activity analysis we identified the critical elements for herbicidal activity, but importantly also show, using antimicrobial susceptibility assays, that separation of antibacterial and herbicidal activities was possible. Overall these results validate chloroplast translation as a viable herbicidal target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...