Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Hum Mutat ; 36(12): 1155-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26290468

RESUMEN

RPL10 encodes ribosomal protein L10 (uL16), a highly conserved multifunctional component of the large ribosomal subunit, involved in ribosome biogenesis and function. Using X-exome resequencing, we identified a novel missense mutation (c.191C>T; p.(A64V)) in the N-terminal domain of the protein, in a family with two affected cousins presenting with X-linked intellectual disability, cerebellar hypoplasia, and spondylo-epiphyseal dysplasia (SED). We assessed the impact of the mutation on the translational capacity of the cell using yeast as model system. The mutation generates a functional ribosomal protein, able to complement the translational defects of a conditional lethal mutation of yeast rpl10. However, unlike previously reported mutations, this novel RPL10 missense mutation results in an increase in the actively translating ribosome population. Our results expand the mutational and clinical spectrum of RPL10 identifying a new genetic cause of SED and highlight the emerging role of ribosomal proteins in the pathogenesis of neurodevelopmental disorders.


Asunto(s)
Cerebelo/anomalías , Genes Ligados a X , Discapacidad Intelectual/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Osteocondrodisplasias/genética , Proteínas Ribosómicas/genética , Preescolar , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Imagen por Resonancia Magnética , Masculino , Malformaciones del Sistema Nervioso/diagnóstico , Neuroimagen , Osteocondrodisplasias/diagnóstico , Fenotipo , Proteína Ribosómica L10 , Proteínas Ribosómicas/metabolismo , Análisis de Secuencia de ADN , Inactivación del Cromosoma X
3.
Biomolecules ; 5(2): 318-42, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25854186

RESUMEN

In this review article, we want to present an overview of oxidative stress in fungal cells in relation to signal transduction, interaction of fungi with plant hosts, and lignocellulose degradation. We will discuss external oxidative stress which may occur through the interaction with other microorganisms or plant hosts as well as internally generated oxidative stress, which can for instance originate from NADPH oxidases or "leaky" mitochondria and may be modulated by the peroxiredoxin system or by protein disulfide isomerases thus contributing to redox signaling. Analyzing redox signaling in fungi with the tools of molecular genetics is presently only in its beginning. However, it is already clear that redox signaling in fungal cells often is linked to cell differentiation (like the formation of perithecia), virulence (in plant pathogens), hyphal growth and the successful passage through the stationary phase.


Asunto(s)
Hongos/metabolismo , Lignina/metabolismo , Estrés Oxidativo , Transducción de Señal , Secuencia de Aminoácidos , Hongos/enzimología , Hongos/genética , Hongos/patogenicidad , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Virulencia/genética
4.
Nat Commun ; 6: 6158, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635753

RESUMEN

Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.


Asunto(s)
Metilación , ARN Ribosómico/genética , Animales , Drosophila , Femenino , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiología , Humanos , Esperanza de Vida , Masculino , Ratones , ARN Ribosómico/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
5.
Mol Autism ; 5(1): 10, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24512814

RESUMEN

BACKGROUND: Known genetic variants can account for 10% to 20% of all cases with autism spectrum disorders (ASD). Overlapping cellular pathomechanisms common to neurons of the central nervous system (CNS) and in tissues of peripheral organs, such as immune dysregulation, oxidative stress and dysfunctions in mitochondrial and protein synthesis metabolism, were suggested to support the wide spectrum of ASD on unifying disease phenotype. Here, we studied in patient-derived lymphoblastoid cell lines (LCLs) how an ASD-specific mutation in ribosomal protein RPL10 (RPL10[H213Q]) generates a distinct protein signature. We compared the RPL10[H213Q] expression pattern to expression patterns derived from unrelated ASD patients without RPL10[H213Q] mutation. In addition, a yeast rpl10 deficiency model served in a proof-of-principle study to test for alterations in protein patterns in response to oxidative stress. METHODS: Protein extracts of LCLs from patients, relatives and controls, as well as diploid yeast cells hemizygous for rpl10, were subjected to two-dimensional gel electrophoresis and differentially regulated spots were identified by mass spectrometry. Subsequently, Gene Ontology database (GO)-term enrichment and network analysis was performed to map the identified proteins into cellular pathways. RESULTS: The protein signature generated by RPL10[H213Q] is a functionally related subset of the ASD-specific protein signature, sharing redox-sensitive elements in energy-, protein- and redox-metabolism. In yeast, rpl10 deficiency generates a specific protein signature, harboring components of pathways identified in both the RPL10[H213Q] subjects' and the ASD patients' set. Importantly, the rpl10 deficiency signature is a subset of the signature resulting from response of wild-type yeast to oxidative stress. CONCLUSIONS: Redox-sensitive protein signatures mapping into cellular pathways with pathophysiology in ASD have been identified in both LCLs carrying the ASD-specific mutation RPL10[H213Q] and LCLs from ASD patients without this mutation. At pathway levels, this redox-sensitive protein signature has also been identified in a yeast rpl10 deficiency and an oxidative stress model. These observations point to a common molecular pathomechanism in ASD, characterized in our study by dysregulation of redox balance. Importantly, this can be triggered by the known ASD-RPL10[H213Q] mutation or by yet unknown mutations of the ASD cohort that act upstream of RPL10 in differential expression of redox-sensitive proteins.

6.
PLoS One ; 8(10): e77791, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204967

RESUMEN

As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Endopeptidasas/metabolismo , Respuesta al Choque Térmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Endopeptidasas/genética , Calor , Microscopía Electrónica , Microscopía Fluorescente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteína que Contiene Valosina
7.
PLoS One ; 8(7): e67609, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861776

RESUMEN

Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered 'specialized' ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin ß3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes Reporteros , Luciferasas/metabolismo , Modelos Moleculares , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Transformación Genética
8.
Subcell Biochem ; 57: 55-78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22094417

RESUMEN

This chapter reviews the role of mitochondria and of mitochondrial metabolism in the aging processes of yeast and the existing evidence for the "mitochondrial theory of aging mitochondrial theory of aging ". Mitochondria are the major source of ATP in the eukaryotic cell but are also a major source of reactive oxygen species reactive oxygen species (ROS) and play an important role in the process of apoptosis and aging. We are discussing the mitochondrial theory of aging mitochondrial theory of aging (TOA), its origin, similarity with other TOAs, and its ramifications which developed in recent decades. The emphasis is on mother cell-specific aging mother cell-specific aging and the RLS (replicative lifespan) with only a short treatment of CLS (chronological lifespan). Both of these aging processes may be relevant to understand also the aging of higher organisms, but they are biochemically very different, as shown by the fact the replicative aging occurs on rich media and is a defect in the replicative capacity of mother cells, while chronological aging occurs in postmitotic cells that are under starvation conditions in stationary phase leading to loss of viability, as discussed elsewhere in this book. In so doing we also give an overview of the similarities and dissimilarities of the various aging processes of the most often used model organisms for aging research with respect to the mitochondrial theory of aging mitochondrial theory of aging.


Asunto(s)
Envejecimiento/metabolismo , Mitocondrias/metabolismo , Levaduras/metabolismo , Envejecimiento/genética , Hipoxia de la Célula , Senescencia Celular , Reparación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Metabolismo Energético , Humanos , Longevidad , Modelos Biológicos , Mutación , Estrés Oxidativo , Factores de Tiempo , Levaduras/genética , Levaduras/crecimiento & desarrollo
9.
Aging (Albany NY) ; 1(7): 622-36, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20157544

RESUMEN

Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/genética , Apoptosis/genética , Proliferación Celular , Tamaño de la Célula , Cruzamientos Genéticos , ADN Circular/genética , ADN Circular/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Peróxido de Hidrógeno/farmacología , Proteínas Mitocondriales/genética , Mutación/genética , Oxidantes/farmacología , Estrés Oxidativo/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , terc-Butilhidroperóxido/farmacología
10.
Exp Gerontol ; 42(4): 275-86, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17174052

RESUMEN

The yeast ribosome is composed of two subunits, the large 60S subunit (LSU) and the small 40S subunit (SSU) and harbors 78 ribosomal proteins (RPs), 59 of which are encoded by duplicate genes. Recently, deletions of the LSU paralogs RPL31A and RPL6B were found to increase significantly yeast replicative life span (RLS). RPs Rpl10 and Rps6 are known translational regulators. Here, we report that heterozygosity for rpl10Delta but not for rpl25Delta, both LSU single copy RP genes, increased RLS by 24%. Deletion of the SSU RPS6B paralog, but not of the RPS6A paralog increased replicative life span robustly by 45%, while deletion of both the SSU RPS18A, and RPS18B paralogs increased RLS moderately, but significantly by 15%. Altering the gene dosage of RPL10 reduced the translating ribosome population, whereas deletion of the RPS6A, RPS6B, RPS18A, and RPS18B paralogs produced a large shift in free ribosomal subunit stoichiometry. We observed a reduction in growth rate in all deletion strains and reduced cell size in the SSU RPS6B, RPS6A, and RPS18B deletion strains. Thus, reduction of gene dosage of RP genes belonging to both the 60S and the 40S subunit affect lifespan, possibly altering the aging process by modulation of translation.


Asunto(s)
Proteína S6 Ribosómica/genética , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Recuento de Células , División Celular/genética , Tamaño de la Célula , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Heterocigoto , Modelos Genéticos , Biosíntesis de Proteínas/genética , Ribosomas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
11.
Biochim Biophys Acta ; 1757(5-6): 631-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16806052

RESUMEN

The yeast orthologue of mammalian TCTP is here proposed to be named Mmi1p (microtubule and mitochondria interacting protein). This protein displays about 50% amino acid sequence identity with its most distantly related orthologs in higher organisms and therefore probably belongs to a small class of yeast proteins which have housekeeping but so far incompletely known functions needed for every eukaryotic cell. Previous investigations of the protein in both higher cells and yeast revealed that it is highly expressed during active growth, but transcriptionally down-regulated in several kinds of stress situations including starvation stress. In human cells, TCTP presumably has anti-apoptotic functions as it binds to Bcl-XL in vivo. TCTP of higher cells was also shown to interact with the translational machinery. It has acquired an additional function in the mammalian immune system, as it is identical with the histamine releasing factor. Here, we show that in S. cerevisiae induction of apoptosis by mild oxidative stress, replicative ageing or mutation of cdc48 leads to translocation of Mmi1p from the cytoplasm to the mitochondria. Mmi1p is stably but reversibly attached to the outer surface of the mitochondria and can be removed by digestion with proteinase K. Glutathionylation of Mmi1p, which is also induced by oxidants, is not a prerequisite or signal for translocation as shown by replacing the only cysteine of Mmi1p by serine. Mmi1p probably interacts with yeast microtubules as deletion of the gene confers sensitivity to benomyl. Conversely, the deletion mutant displays resistance to hydrogen peroxide stress and shows a small but significant elongation of the mother cell-specific lifespan. Our results so far indicate that Mmi1p is one of the few proteins establishing a functional link between microtubules and mitochondria which may be needed for correct localization of mitochondria during cell division.


Asunto(s)
Apoptosis , Microtúbulos/fisiología , Mitocondrias/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas , Secuencia de Aminoácidos , Biomarcadores de Tumor , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citoplasma/fisiología , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Estrés Oxidativo , Fosforilación , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteína Tumoral Controlada Traslacionalmente 1 , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...