Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Dis ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38300641

RESUMEN

Increased endothelial permeability plays an important role in blood-brain barrier (BBB) dysfunction and is implicated in neuronal injury in many diseased conditions. BBB disruption is primarily determined by dysfunction of endothelial cell-cell junctions. Deprivation of oxygen supply or hypoxia, a common feature of a variety of human diseases, is a major risk factor for BBB disruption. The molecular regulatory mechanisms of hypoxia-induced BBB dysfunction remain incompletely understood. The mitochondrial enzyme, arginase type II (Arg-II), has been shown to promote endothelial dysfunction. However, its role in hypoxia-induced BBB dysfunction has not been explored. In the C57BL/6J mouse model, hypoxia (8% O2, 24 hours) augments vascular Arg-II in the hippocampus, decreases cell-cell junction protein levels of Zonula occludens-1 (ZO-1), occludin, and CD31 in endothelial cells, increases BBB leakage in the brain in old mice (20 to 24 months) but not in young animals (3 to 6 months). These effects of hypoxia in aging are suppressed in arg-ii-/- mice. Moreover, the age-associated vulnerability of endothelial integrity to hypoxia is demonstrated in senescent human brain microvascular endothelial cell (hCMEC/D3) culture model. Further results in the cell culture model show that hypoxia augments Arg-II, decreases ZO-1 and occludin levels, and increases endothelial permeability, which is prevented by arg-ii gene silencing or by inhibition of mitochondrial reactive oxygen species (mtROS) production. Our study demonstrates an essential role of Arg-II in increased endothelial permeability and BBB dysfunction by promoting mtROS generation, resulting in decreased endothelial cell-cell junction protein levels under hypoxic conditions particularly in aging.

2.
Materials (Basel) ; 16(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068209

RESUMEN

Inhibitors for the prevention of corrosion in reinforced concrete are chemical substances able to reduce carbon steel reinforcements corrosion without altering the overall properties of concrete. Today, many commercially available substances have a negative impact on human safety during either the inhibitor synthesis, their handling or application in field. Green corrosion inhibitors are nontoxic, biodegradable and environmentally biocompatible substances. They are generally made of extracts from natural plants or waste, which are abundantly available in several countries. The majority of green inhibitor molecules usually contain multiple bonds, aromatic rings, polar functional groups and electronegative atoms as P, N, S or O; the latter are able to coordinate with metal cations to form protective layers on the metallic surface of the reinforcements, so as to inhibit the development (initiation and/or propagation) of the corrosion process. In this review, the most recent achievements on the study and investigation of green corrosion inhibitors for concrete structures are presented and discussed. Inhibitors are classified based on their nature and inhibition mechanism. The inhibition effectiveness of the substances is compared with the well-established effective nitrite-based inhibitor, distinguishing between accelerated and long-term tests. Based on the available data, a summary of corrosion inhibitors efficiency is reported.

3.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446405

RESUMEN

One of the manifestations of renal aging is podocyte dysfunction and loss, which are associated with proteinuria and glomerulosclerosis. Studies show a male bias in glomerular dysfunction and chronic kidney diseases, and the underlying mechanisms remain obscure. Recent studies demonstrate the role of an age-associated increase in arginase-II (Arg-II) in proximal tubules of both male and female mice. However, it is unclear whether Arg-II is also involved in aging glomeruli. The current study investigates the role of the sex-specific elevation of Arg-II in podocytes in age-associated increased albuminuria. Young (3-4 months) and old (20-22 months) male and female mice of wt and arginase-II knockout (arg-ii-/-) were used. Albuminuria was employed as a readout of glomerular function. Cellular localization and expression of Arg-II in glomeruli were analyzed using an immunofluorescence confocal microscope. A more pronounced age-associated increase in albuminuria was found in male than in female mice. An age-associated induction of Arg-II in glomeruli and podocytes (as demonstrated by co-localization of Arg-II with the podocyte marker synaptopodin) was also observed in males but not in females. Ablation of the arg-ii gene in mice significantly reduces age-associated albuminuria in males. Also, age-associated decreases in podocyte density and glomerulus hypertrophy are significantly prevented in male arg-ii-/- but not in female mice. However, age-associated glomerulosclerosis is not affected by arg-ii ablation in both sexes. These results demonstrate a role of Arg-II in sex-specific podocyte injury in aging. They may explain the sex-specific differences in the development of renal disease in humans during aging.


Asunto(s)
Podocitos , Animales , Femenino , Masculino , Ratones , Albuminuria/metabolismo , Arginasa/genética , Arginasa/metabolismo , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835007

RESUMEN

Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-ß1 type-I receptor blocker SB431542. Indeed, TGF-ß1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-ß1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-ß1 cascade, which may contribute to hypoxia-induced podocyte damage.


Asunto(s)
Túbulos Renales Proximales , Comunicación Paracrina , Podocitos , Humanos , Apoptosis , Arginasa/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Comunicación Paracrina/genética , Podocitos/metabolismo , Podocitos/patología , Factor de Crecimiento Transformador beta1/metabolismo
5.
Materials (Basel) ; 15(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454421

RESUMEN

The topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments. It focuses on the design methodologies as well as the use of unconventional corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or traditional solutions for reinforced concrete protection and prevention against rebars corrosion such as corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the scientific literature highlights that there is no preferential way for the production of "green" concrete but that the sustainability of the building materials can only be achieved by implementing simultaneous multiple strategies aimed at reducing environmental impact and improving both durability and performances.

6.
Clocks Sleep ; 4(1): 185-201, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323171

RESUMEN

Circadian rhythms are self-sustained oscillators with a period of 24 h that is based on the output of transcriptional and post-translational feedback loops. Phosphorylation is considered one of the most important post-translational modifications affecting rhythmicity from cyanobacteria to mammals. For example, the lack of cyclin-dependent kinase 5 (CDK5) shortened the period length of the circadian oscillator in the Suprachiasmatic Nuclei (SCN) of mice via the destabilization of the PERIOD 2 (PER2) protein. Here, we show that CDK5 kinase activity and its interaction with clock components, including PER2 and CLOCK, varied over time in mouse embryonic fibroblast cells. Furthermore, the deletion of Cdk5 from cells resulted in a prolonged period and shifted the transcription of clock-controlled genes by about 2 to 4 h with a simple delay of chromatin binding of ARNTL (BMAL1) CLOCK. Taken together, our data indicate that CDK5 is critically involved in regulating the circadian clock in vitro at the molecular level.

7.
Front Physiol ; 12: 773719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867480

RESUMEN

The ureohydrolase, type-II arginase (Arg-II), is a mitochondrial enzyme metabolizing L-arginine into urea and L-ornithine and is highly expressed in renal proximal tubular cells (PTC) and upregulated by renal ischemia. Recent studies reported contradictory results on the role of Arg-II in renal injury. The aim of our study is to investigate the function of Arg-II in renal epithelial cell damage under hypoxic conditions. Human renal epithelial cell line HK2 was cultured under hypoxic conditions for 12-48 h. Moreover, ex vivo experiments with isolated kidneys from wild-type (WT) and genetic Arg-II deficient mice (Arg-II-/- ) were conducted under normoxic and hypoxic conditions. The results show that hypoxia upregulates Arg-II expression in HK2 cells, which is inhibited by silencing both hypoxia-inducible factors (HIFs) HIF1α and HIF2α. Treatment of the cells with dimethyloxaloylglycine (DMOG) to stabilize HIFα also enhances Arg-II. Interestingly, hypoxia or DMOG upregulates transforming growth factor ß1 (TGFß1) levels and collagens Iα1, which is prevented by Arg-II silencing, while TGFß1-induced collagen Iα1 expression is not affected by Arg-II silencing. Inhibition of mitochondrial complex-I by rotenone abolishes hypoxia-induced reactive oxygen species (mtROS) and TGFß1 elevation in the cells. Ex vivo experiments show elevated Arg-II and TGFß1 expression and the injury marker NGAL in the WT mouse kidneys under hypoxic conditions, which is prevented in the Arg-II-/- mice. Taking together, the results demonstrate that hypoxia activates renal epithelial HIFs-Arg-II-mtROS-TGFß1-cascade, participating in hypoxia-associated renal injury and fibrosis.

8.
Sci Rep ; 11(1): 21766, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741086

RESUMEN

Light affects many physiological processes in mammals such as entrainment of the circadian clock, regulation of mood, and relaxation of blood vessels. At the molecular level, a stimulus such as light initiates a cascade of kinases that phosphorylate CREB at various sites, including serine 133 (S133). This modification leads CREB to recruit the co-factor CRCT1 and the histone acetyltransferase CBP to stimulate the transcription of genes containing a CRE element in their promoters, such as Period 1 (Per1). However, the details of this pathway are poorly understood. Here we provide evidence that PER2 acts as a co-factor of CREB to facilitate the formation of a transactivation complex on the CRE element of the Per1 gene regulatory region in response to light or forskolin. Using in vitro and in vivo approaches, we show that PER2 modulates the interaction between CREB and its co-regulator CRTC1 to support complex formation only after a light or forskolin stimulus. Furthermore, the absence of PER2 abolished the interaction between the histone acetyltransferase CBP and CREB. This process was accompanied by a reduction of histone H3 acetylation and decreased recruitment of RNA Pol II to the Per1 gene. Collectively, our data show that PER2 supports the stimulus-dependent induction of the Per1 gene via modulation of the CREB/CRTC1/CBP complex.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Circadianas Period/metabolismo , Acetilación , Animales , Cromatina/metabolismo , Masculino , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo
9.
PLoS Genet ; 17(7): e1009625, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237069

RESUMEN

Light at night has strong effects on physiology and behavior of mammals. It affects mood in humans, which is exploited as light therapy, and has been shown to reset the circadian clock in the suprachiasmatic nuclei (SCN). This resetting is paramount to align physiological and biochemical timing to the environmental light-dark cycle. Here we provide evidence that light at zeitgeber time (ZT) 22 affects mood-related behaviors also in mice by activating the clock gene Period1 (Per1) in the lateral habenula (LHb), a brain region known to modulate mood-related behaviors. We show that complete deletion of Per1 in mice led to depressive-like behavior and loss of the beneficial effects of light on this behavior. In contrast, specific deletion of Per1 in the region of the LHb did not affect mood-related behavior, but suppressed the beneficial effects of light. RNA sequence analysis in the mesolimbic dopaminergic system revealed profound changes of gene expression after a light pulse at ZT22. In the nucleus accumbens (NAc), sensory perception of smell and G-protein coupled receptor signaling were affected the most. Interestingly, most of these genes were not affected in Per1 knock-out animals, indicating that induction of Per1 by light serves as a filter for light-mediated gene expression in the brain. Taken together we show that light affects mood-related behavior in mice at least in part via induction of Per1 in the LHb with consequences on mood-related behavior and signaling mechanisms in the mesolimbic dopaminergic system.


Asunto(s)
Conducta Animal/fisiología , Habénula/fisiología , Proteínas Circadianas Period/genética , Afecto/fisiología , Animales , Depresión/genética , Femenino , Regulación de la Expresión Génica , Luz , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Circadianas Period/metabolismo
10.
Front Physiol ; 11: 612510, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324245

RESUMEN

Endogenous circadian rhythms are biological processes generated by an internal body clock. They are self-sustaining, and they govern biochemical and physiological processes. However, circadian rhythms are influenced by many external stimuli to reprogram the phase in response to environmental change. Through their adaptability to environmental changes, they synchronize physiological responses to environmental challenges that occur within a sidereal day. The precision of this circadian system is assured by many post-translational modifications (PTMs) that occur on the protein components of the circadian clock mechanism. The most ancient example of circadian rhythmicity driven by phosphorylation of clock proteins was observed in cyanobacteria. The influence of phosphorylation on the circadian system is observed through different kingdoms, from plants to humans. Here, we discuss how phosphorylation modulates the mammalian circadian clock, and we give a detailed overview of the most critical discoveries in the field.

11.
Data Brief ; 33: 106415, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33134445

RESUMEN

Brenna et al. [1] developed a survey protocol to collect evidence aimed at classifying flood deposits on the basis of the flow type that mobilized and deposited sediment. Such a survey protocol was adopted to characterize the flood deposits in a mountain catchment of the Dolomites (the Tegnas Torrent and its tributaries; drainage area of 51 km2) after a high-magnitude hydrological event that occurred in October 2018 (the so-called "Vaia Storm"). In this article, we present the field data collected at thirty-two survey sites considering the geomorphological and sedimentological characteristics of the analysed sedimentary products and their effects on the vegetation. Data on the characteristics of the flood deposits have enabled recognizing the transport mechanisms that occurred during the Vaia Storm along the stream network [1]. Future applications of the survey protocol adopted in this study could compare and integrate the collected data with those presented in detail in this article.

12.
Materials (Basel) ; 13(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392826

RESUMEN

Cathodic protection (CP), in combination with an insulating coating, is a preventative system to control corrosion of buried carbon steel pipes. The corrosion protection of coating defects is achieved by means of a cathodic polarization below the protection potential, namely -0.85 V vs. CSE (CSE, copper-copper sulfate reference electrode) for carbon steel in aerated soil. The presence of alternating current (AC) interference, induced by high-voltage power lines (HVPL) or AC-electrified railways, may represent a corrosion threat for coated carbon steel structures, although the potential protection criterion is matched. Nowadays, the protection criteria in the presence of AC, as well as AC corrosion mechanisms in CP condition, are still controversial and discussed. This paper deals with a narrative literature review, which includes selected journal articles, conference proceedings and grey literature, on the assessment, acceptable criteria and corrosion mechanism of carbon steel structures in CP condition with AC interference. The study shows that the assessment of AC corrosion likelihood should be based on the measurement of AC and DC (direct current) related parameters, namely AC voltage, AC and DC densities and potential measurements. Threshold values of the mentioned parameters are discussed. Overprotection (EIR-free < -1.2 V vs. CSE) is the most dangerous condition in the presence of AC: the combination of strong alkalization close to the coating defect due to the high CP current density and the action of AC interference provokes localized corrosion of carbon steel.

13.
Elife ; 82019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31687929

RESUMEN

Circadian oscillations emerge from transcriptional and post-translational feedback loops. An important step in generating rhythmicity is the translocation of clock components into the nucleus, which is regulated in many cases by kinases. In mammals, the kinase promoting the nuclear import of the key clock component Period 2 (PER2) is unknown. Here, we show that the cyclin-dependent kinase 5 (CDK5) regulates the mammalian circadian clock involving phosphorylation of PER2. Knock-down of Cdk5 in the suprachiasmatic nuclei (SCN), the main coordinator site of the mammalian circadian system, shortened the free-running period in mice. CDK5 phosphorylated PER2 at serine residue 394 (S394) in a diurnal fashion. This phosphorylation facilitated interaction with Cryptochrome 1 (CRY1) and nuclear entry of the PER2-CRY1 complex. Taken together, we found that CDK5 drives nuclear entry of PER2, which is critical for establishing an adequate circadian period of the molecular circadian cycle. Of note is that CDK5 may not exclusively phosphorylate PER2, but in addition may regulate other proteins that are involved in the clock mechanism. Taken together, it appears that CDK5 is critically involved in the regulation of the circadian clock and may represent a link to various diseases affected by a derailed circadian clock.


Asunto(s)
Relojes Circadianos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Animales , Núcleo Celular/metabolismo , Ritmo Circadiano , Epistasis Genética , Ratones , Células 3T3 NIH , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Fosforilación , Fosfoserina/metabolismo , Estabilidad Proteica , ARN Interferente Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Supraquiasmático/fisiología , Factores de Tiempo
14.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212732

RESUMEN

Light influences a wide range of physiological processes from prokaryotes to mammals. Neurospora crassa represents an important model system used for studying this signal pathway. At molecular levels, the WHITE COLLAR Complex (WCC), a heterodimer formed by WC-1 (the blue light photo-sensor) and WC-2 (the transcriptional activator), is the critical positive regulator of light-dependent gene expression. GATN (N indicates any other nucleotide) repeats are consensus sequences within the promoters of light-dependent genes recognized by the WCC. The distal GATN is also known as C-box since it is involved in the circadian clock. However, we know very little about the role of the proximal GATN, and the molecular mechanism that controls the transcription of light-induced genes during the dark/light transition it is still unclear. Here we showed a first indication that mutagenesis of the proximal GATA sequence within the target promoter of the albino-3 gene or deletion of the WC-1 zinc finger domain led to a rise in expression of light-dependent genes already in the dark, effectively decoupling light stimuli and transcriptional activation. This is the first observation of cis-/trans-acting repressive machinery, which is not consistent with the light-dependent regulatory mechanism observed in the eukaryotic world so far.


Asunto(s)
Sitios de Unión , Oscuridad , Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Luz , Elementos de Respuesta , Factores de Transcripción/metabolismo , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción GATA/química , Mutación , Neurospora/genética , Neurospora/metabolismo , Neurospora/efectos de la radiación , Motivos de Nucleótidos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Activación Transcripcional , Dedos de Zinc/genética
15.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29996741

RESUMEN

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Asunto(s)
Materiales de Construcción , Tecnología Química Verde , Administración de Residuos/métodos , Álcalis/química , Compuestos de Aluminio/química , Silicatos de Aluminio/química , Compuestos de Calcio/química , Arcilla , Corrosión , Compuestos de Azufre/química
16.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29991308

RESUMEN

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Asunto(s)
Materiales de Construcción , Administración de Residuos/métodos , Compuestos de Calcio/química , Arcilla/química , Tecnología Química Verde/métodos , Óxidos/química , Reciclaje , Goma/química , Dióxido de Silicio/química
17.
J Appl Biomater Funct Mater ; 16(1): 3-13, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29192718

RESUMEN

Titanium is well known as one of the most corrosion-resistant metals. However, it can suffer corrosion attacks in some specific aggressive conditions. To further increase its corrosion resistance, it is possible either to modify its surface, tuning either thickness, composition, morphology or structure of the oxide that spontaneously forms on the metal, or to modify its bulk composition. Part 2 of this review is dedicated to the corrosion of titanium and focuses on possible titanium treatments that can increase corrosion resistance. Both surface treatments, such as anodization or thermal or chemical oxidation, and bulk treatments, such as alloying, are considered, highlighting the advantages of each technique.


Asunto(s)
Aleaciones/química , Titanio/química , Corrosión , Propiedades de Superficie
18.
J Appl Biomater Funct Mater ; 15(4): e291-e302, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29131299

RESUMEN

Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.


Asunto(s)
Ambiente , Titanio/química , Aleaciones/química , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacocinética , Corrosión , Humanos , Oxidación-Reducción , Óxidos/química , Estrés Mecánico , Propiedades de Superficie , Titanio/farmacocinética
19.
Fungal Biol ; 121(3): 253-263, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28215352

RESUMEN

Light is perceived and transduced by fungi, where it modulates processes as diverse as growth and morphogenesis, sexual development and secondary metabolism. A special case in point is that of fungi with a subterranean, light-shielded habitat such as Tuber spp. Using as reference the genome sequence of the black truffle Tuber melanosporum, we used bioinformatic prediction tools and expression data to gain insight on the photoreceptor systems of this hypogeous ectomycorrhizal fungus. These include a chromophore-less opsin, a putative red-light-sensing phytochrome not expressed at detectable levels in any of the examined lifecycle stages, and a nearly canonical two-component (WC-1/WC-2) photoreceptor system similar to the Neurospora white collar complex (WCC). Multiple evidence, including expression at relatively high levels in all lifecycle stages except for fruiting-bodies and the results of heterologous functional complementation experiments conducted in Neurospora, suggests that the Tuber WCC is likely functional and capable of responding to blue-light. The other putative T. melanosporum photoreceptor components, especially the chromophore-less opsin and the likely non-functional phytochrome, may instead represent signatures of adaptation to a hypogeous (light-shielded) lifestyle.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico , Fotorreceptores Microbianos/genética , Biología Computacional
20.
J Appl Biomater Funct Mater ; 15(1): e19-e24, 2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28127744

RESUMEN

BACKGROUND: Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. METHODS: Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. RESULTS: All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. CONCLUSIONS: Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.


Asunto(s)
Técnicas Electroquímicas , Ácidos Sulfúricos/química , Titanio/química , Corrosión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...