Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405869

RESUMEN

Non-typhoidal Salmonella enterica cause an estimated 1 million cases of gastroenteritis annually in the United States. These serovars use secreted protein effectors to mimic and reprogram host cellular functions. We previously discovered that the secreted effector SarA (Salmonella anti-inflammatory response activator; also known as SteE) was required for increased intracellular replication of S. Typhimurium and production of the anti-inflammatory cytokine interleukin-10 (IL-10). SarA facilitates phosphorylation of STAT3 through a region of homology with the host cytokine receptor gp130. Here, we demonstrate that a single amino acid difference between SarA and gp130 is critical for the anti-inflammatory bias of SarA-STAT3 signaling. An isoleucine at the pY+1 position of the YxxQ motif in SarA (which binds the SH2 domain in STAT3) causes increased STAT3 phosphorylation and expression of anti-inflammatory target genes. This isoleucine, completely conserved in ~4000 Salmonella isolates, renders SarA a better substrate for tyrosine phosphorylation by GSK-3. GSK-3 is canonically a serine/threonine kinase that nonetheless undergoes tyrosine autophosphorylation at a motif that has an invariant isoleucine at the pY+1 position. Our results provide a molecular basis for how a Salmonella secreted effector achieves supraphysiological levels of STAT3 activation to control host genes during infection.

2.
Nat Commun ; 15(1): 1153, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326294

RESUMEN

Transcriptional regulator MtrR inhibits the expression of the multidrug efflux pump operon mtrCDE in the pathogenic bacterium Neisseria gonorrhoeae. Here, we show that MtrR binds the hormonal steroids progesterone, ß-estradiol, and testosterone, which are present at urogenital infection sites, as well as ethinyl estrogen, a component of some hormonal contraceptives. Steroid binding leads to the decreased affinity of MtrR for cognate DNA, increased mtrCDE expression, and enhanced antimicrobial resistance. Furthermore, we solve crystal structures of MtrR bound to each steroid, thus revealing their binding mechanisms and the conformational changes that induce MtrR.


Asunto(s)
Neisseria gonorrhoeae , Proteínas Represoras , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a Múltiples Medicamentos , Esteroides/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
3.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398116

RESUMEN

Overexpression of the multidrug efflux pump MtrCDE, a critical factor of multidrug-resistance in Neisseria gonorrhoeae , the causative agent of gonorrheae, is repressed by the transcriptional regulator, MtrR (multiple transferable resistance repressor). Here, we report the results from a series of in vitro experiments to identify innate, human inducers of MtrR and to understand the biochemical and structural mechanisms of the gene regulatory function of MtrR. Isothermal titration calorimetry experiments reveal that MtrR binds the hormonal steroids progesterone, ß-estradiol, and testosterone, all of which are present at significant concentrations at urogenital infection sites as well as ethinyl estrogen, a component of some birth control pills. Binding of these steroids results in decreased affinity of MtrR for cognate DNA, as demonstrated by fluorescence polarization-based assays. The crystal structures of MtrR bound to each steroid provided insight into the flexibility of the binding pocket, elucidated specific residue-ligand interactions, and revealed the conformational consequences of the induction mechanism of MtrR. Three residues, D171, W136 and R176 are key to the specific binding of these gonadal steroids. These studies provide a molecular understanding of the transcriptional regulation by MtrR that promotes N. gonorrhoeae survival in its human host.

4.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993618

RESUMEN

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million deaths worldwide each year. Yet the arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional fungal-specific biosynthetic pathways. One such pathway involves the biosynthesis of trehalose. Trehalose is a non-reducing disaccharide composed of two molecules of glucose that is required for pathogenic fungi, including Candida albicans and Cryptococcus neoformans, to survive in their human hosts. Trehalose biosynthesis is a two-step process in fungal pathogens. Trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P). Subsequently, trehalose-6-phosphate phosphatase (Tps2) converts T6P to trehalose. The trehalose biosynthesis pathway has been identified as a top candidate for novel antifungal development based on quality, occurrence, specificity, and assay development. However, there are currently no known antifungal agents that target this pathway. As initial steps to develop Tps1 from Cryptococcus neoformans (CnTps1) as a drug target, we report the structures of full-length apo CnTps1 and CnTps1 in complex with uridine diphosphate (UDP) and glucose-6-phosphate (G6P). Both CnTps1 structures are tetramers and display D2 (222) molecular symmetry. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies key residues required for substrate-binding, which are conserved amongst other Tps1 enzymes, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), encompassing residues M209 to I300, which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in the density maps. Although, activity assays revealed that the highly conserved IDD is not required for catalysis in vitro, we hypothesize that the IDD is required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Characterization of the substrate specificity of CnTps1 revealed that UDP-galactose, an epimer of UDP-glucose, is a very poor substrate and inhibitor of the enzyme and highlights the exquisite substrate specificity of Tps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.

5.
Cell Genom ; 2(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36465279

RESUMEN

During pandemics, individuals exhibit differences in risk and clinical outcomes. Here, we developed single-cell high-throughput human in vitro susceptibility testing (scHi-HOST), a method for rapidly identifying genetic variants that confer resistance and susceptibility. We applied this method to influenza A virus (IAV), the cause of four pandemics since the start of the 20th century. scHi-HOST leverages single-cell RNA sequencing (scRNA-seq) to simultaneously assign genetic identity to cells in mixed infections of cell lines of European, African, and Asian origin, reveal associated genetic variants for viral burden, and identify expression quantitative trait loci. Integration of scHi-HOST with human challenge and experimental validation demonstrated that a missense variant in endoplasmic reticulum aminopeptidase 1 (ERAP1; rs27895) increased IAV burden in cells and human volunteers. rs27895 exhibits population differentiation, likely contributing to greater permissivity of cells from African populations to IAV. scHi-HOST is a broadly applicable method and resource for decoding infectious-disease genetics.

6.
Nat Commun ; 13(1): 3793, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778410

RESUMEN

How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.


Asunto(s)
Glutamato-Amoníaco Ligasa , Nitrógeno , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo
7.
Nucleic Acids Res ; 50(2): 847-866, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34967415

RESUMEN

The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34290147

RESUMEN

Filamentous actinobacteria of the genus Streptomyces have a complex lifecycle involving the differentiation of reproductive aerial hyphae into spores. We recently showed c-di-GMP controls this transition by arming a unique anti-σ, RsiG, to bind the sporulation-specific σ, WhiG. The Streptomyces venezuelae RsiG-(c-di-GMP)2-WhiG structure revealed that a monomeric RsiG binds c-di-GMP via two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an antiparallel coiled-coil. Here we show that RsiG homologs are found scattered throughout the Actinobacteria. Strikingly, RsiGs from unicellular bacteria descending from the most basal branch of the Actinobacteria are small proteins containing only one c-di-GMP binding motif, yet still bind their WhiG partners. Our structure of a Rubrobacter radiotolerans (RsiG)2-(c-di-GMP)2-WhiG complex revealed that these single-motif RsiGs are able to form an antiparallel coiled-coil through homodimerization, thereby allowing them to bind c-di-GMP similar to the monomeric twin-motif RsiGs. Further data show that in the unicellular actinobacterium R. radiotolerans, the (RsiG)2-(c-di-GMP)2-WhiG regulatory switch controls type IV pilus expression. Phylogenetic analysis indicates the single-motif RsiGs likely represent the ancestral state and an internal gene-duplication event gave rise to the twin-motif RsiGs inherited elsewhere in the Actinobacteria. Thus, these studies show how the anti-σ RsiG has evolved through an intragenic duplication event from a small protein carrying a single c-di-GMP binding motif, which functions as a homodimer, to a larger protein carrying two c-di-GMP binding motifs, which functions as a monomer. Consistent with this, our structures reveal potential selective advantages of the monomeric twin-motif anti-σ factors.


Asunto(s)
Actinobacteria/metabolismo , Factor sigma/metabolismo , Streptomyces/metabolismo , Actinobacteria/genética , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Factor sigma/genética , Streptomyces/genética
9.
Nucleic Acids Res ; 49(7): 4155-4170, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784401

RESUMEN

Mutations within the mtrR gene are commonly found amongst multidrug resistant clinical isolates of Neisseria gonorrhoeae, which has been labelled a superbug by the Centers for Disease Control and Prevention. These mutations appear to contribute to antibiotic resistance by interfering with the ability of MtrR to bind to and repress expression of its target genes, which include the mtrCDE multidrug efflux transporter genes and the rpoH oxidative stress response sigma factor gene. However, the DNA-recognition mechanism of MtrR and the consensus sequence within these operators to which MtrR binds has remained unknown. In this work, we report the crystal structures of MtrR bound to the mtrCDE and rpoH operators, which reveal a conserved, but degenerate, DNA consensus binding site 5'-MCRTRCRN4YGYAYGK-3'. We complement our structural data with a comprehensive mutational analysis of key MtrR-DNA contacts to reveal their importance for MtrR-DNA binding both in vitro and in vivo. Furthermore, we model and generate common clinical mutations of MtrR to provide plausible biochemical explanations for the contribution of these mutations to multidrug resistance in N. gonorrhoeae. Collectively, our findings unveil key biological mechanisms underlying the global stress responses of N. gonorrhoeae.


Asunto(s)
Proteínas Bacterianas , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Neisseria gonorrhoeae , Proteínas Represoras , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Mutación , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Mol Cell ; 81(1): 139-152.e10, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33217319

RESUMEN

The bacterium Francisella tularensis (Ft) is one of the most infectious agents known. Ft virulence is controlled by a unique combination of transcription regulators: the MglA-SspA heterodimer, PigR, and the stress signal, ppGpp. MglA-SspA assembles with the σ70-associated RNAP holoenzyme (RNAPσ70), forming a virulence-specialized polymerase. These factors activate Francisella pathogenicity island (FPI) gene expression, which is required for virulence, but the mechanism is unknown. Here we report FtRNAPσ70-promoter-DNA, FtRNAPσ70-(MglA-SspA)-promoter DNA, and FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-promoter DNA cryo-EM structures. Structural and genetic analyses show MglA-SspA facilitates σ70 binding to DNA to regulate virulence and virulence-enhancing genes. Our Escherichia coli RNAPσ70-homodimeric EcSspA structure suggests this is a general SspA-transcription regulation mechanism. Strikingly, our FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-DNA structure reveals ppGpp binding to MglA-SspA tethers PigR to promoters. PigR in turn recruits FtRNAP αCTDs to DNA UP elements. Thus, these studies unveil a unique mechanism for Ft pathogenesis involving a virulence-specialized RNAP that employs two (MglA-SspA)-based strategies to activate virulence genes.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Francisella tularensis , Regiones Promotoras Genéticas , Factor sigma , Factores de Virulencia , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Factor sigma/genética , Factor sigma/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-33077659

RESUMEN

We previously identified a small-molecule inhibitor of capsule biogenesis (designated DU011) and identified its target as MprA, a MarR family transcriptional repressor of multidrug efflux pumps. Unlike other proposed MprA ligands, such as salicylate and 2,4-dinitrophenol (DNP), DU011 does not alter Escherichia coli antibiotic resistance and has significantly enhanced inhibition of capsule expression. We hypothesized that the potency and the unique action of DU011 are due to novel interactions with the MprA binding pocket and the conformation assumed by MprA upon binding DU011 relative to other ligands. To understand the dynamics of MprA-DU011 interaction, we performed hydrogen-deuterium exchange mass spectrometry (HDX-MS); this suggested that four peptide regions undergo conformational changes upon binding DU011. We conducted isothermal calorimetric titration (ITC) to quantitatively characterize MprA binding to DU011 and canonical ligands and observed a distinct two-site binding isotherm associated with the binding reaction of MprA to DU011; however, salicylate and DNP showed a one-site binding isotherm with lower affinity. To elucidate the binding pocket(s) of MprA, we selected single point mutants of MprA that included mutated residues predicted to be within the putative binding pocket (Q51A, F58A, and E65D) as well as on or near the DNA-binding domain (L81A, S83T, and T86A). Our ITC studies suggest that two of the tested MprA mutants had lower affinity for DU011: Q51A and F58A. In addition to elucidating the MprA binding pocket for DU011, we studied the binding of these mutants to salicylate and DNP to reveal the binding pockets of these canonical ligands.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Sitios de Unión , Farmacorresistencia Microbiana , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Polisacáridos , Unión Proteica
12.
Nucleic Acids Res ; 48(7): 3987-3997, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32133526

RESUMEN

Hfq regulates bacterial gene expression post-transcriptionally by binding small RNAs and their target mRNAs, facilitating sRNA-mRNA annealing, typically resulting in translation inhibition and RNA turnover. Hfq is also found in the nucleoid and binds double-stranded (ds) DNA with a slight preference for A-tracts. Here, we present the crystal structure of the Escherichia coli Hfq Core bound to a 30 bp DNA, containing three 6 bp A-tracts. Although previously postulated to bind to the 'distal' face, three statistically disordered double stranded DNA molecules bind across the proximal face of the Hfq hexamer as parallel, straight rods with B-DNA like conformational properties. One DNA duplex spans the diameter of the hexamer and passes over the uridine-binding proximal-face pore, whereas the remaining DNA duplexes interact with the rims and serve as bridges between adjacent hexamers. Binding is sequence-independent with residues N13, R16, R17 and Q41 interacting exclusively with the DNA backbone. Atomic force microscopy data support the sequence-independent nature of the Hfq-DNA interaction and a role for Hfq in DNA compaction and nucleoid architecture. Our structure and nucleic acid-binding studies also provide insight into the mechanism of sequence-independent binding of Hfq to dsRNA stems, a function that is critical for proper riboregulation.


Asunto(s)
ADN/química , Proteínas de Escherichia coli/química , Proteína de Factor 1 del Huésped/química , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Modelos Moleculares , Unión Proteica , ARN Bicatenario/química , ARN Bicatenario/metabolismo , ARN Mensajero/química
13.
Curr Opin Microbiol ; 55: 26-33, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32120333

RESUMEN

Proteins that regulate transcription often also play an architectural role in the genome. Thus, it has been difficult to define with precision the distinctions between transcription factors and nucleoid-associated proteins (NAPs). Anachronistic descriptions of NAPs as 'histone-like' implied an organizational function in a bacterial chromatin-like complex. Definitions based on protein abundance, regulatory mechanisms, target gene number, or the features of their DNA-binding sites are insufficient as marks of distinction, and trying to distinguish transcription factors and NAPs based on their ranking within regulatory hierarchies or positions in gene-control networks is also unsatisfactory. The terms 'transcription factor' and 'NAP' are ad hoc operational definitions with each protein lying along a spectrum of structural and functional features extending from highly specific actors with few gene targets to those with a pervasive influence on the transcriptome. The Streptomyces BldC protein is used to illustrate these issues.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de Unión al ADN/fisiología , Streptomyces/fisiología , Factores de Transcripción/fisiología , Sitios de Unión , Evolución Biológica , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Conformación Proteica
14.
Cell Host Microbe ; 27(1): 129-139.e4, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31901521

RESUMEN

Bacteria masterfully co-opt and subvert host signal transduction. As a paradigmatic example, Salmonella uses two type-3 secretion systems to inject effector proteins that facilitate Salmonella entry, establishment of an intracellular niche, and modulation of immune responses. We previously demonstrated that the Salmonella anti-inflammatory response activator SarA (Stm2585, GogC, PagJ, SteE) activates the host transcription factor STAT3 to drive expression of immunomodulatory STAT3-targets. Here, we demonstrate-by sequence, function, and biochemical measurement-that SarA mimics the cytoplasmic domain of glycoprotein 130 (gp130, IL6ST). SarA is phosphorylated at a YxxQ motif, facilitating binding to STAT3 with greater affinity than gp130. Departing from canonical gp130 signaling, SarA function is JAK-independent but requires GSK-3, a key regulator of metabolism and development. Our results reveal that SarA undergoes host phosphorylation to recruit a STAT3-activating complex, circumventing cytokine receptor activation. Effector mimicry of gp130 suggests GSK-3 can regulate normal cytokine signaling, potentially enabling metabolic and immune crosstalk.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Imitación Molecular/inmunología , Factor de Transcripción STAT3/metabolismo , Transactivadores/metabolismo , Línea Celular , Receptor gp130 de Citocinas/metabolismo , Citocinas/metabolismo , Humanos , Inmunidad Innata , Receptores de Citocinas/metabolismo , Factor de Transcripción STAT3/inmunología , Salmonella , Transducción de Señal
15.
Mol Cell ; 77(3): 586-599.e6, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810759

RESUMEN

Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.


Asunto(s)
GMP Cíclico/análogos & derivados , Factor sigma/metabolismo , Streptomyces/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Dominios Proteicos , ARN Bacteriano/metabolismo , Esporas Bacterianas/metabolismo , Streptomyces/genética
16.
Protein Sci ; 29(3): 647-653, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31682303

RESUMEN

There has been a rapid spread of multidrug-resistant (MDR) bacteria across the world. MDR efflux transporters are an important mechanism of antibiotic resistance in many pathogens among both Gram positive and Gram negative bacteria. These pumps can recognize a variety of chemically and structurally different compounds, including innate and clinically administered antibiotics. Intriguingly, these efflux pumps are often regulated by transcription factors that themselves bind a diverse set of substrates thereby allowing them to regulate the expression of their cognate MDR efflux pumps. One significant family of such transcription factors is the Multiple antibiotic resistance Repressor (MarR) family. Members of this family are well conserved across different bacterial species and in some cases are known to regulate vital bacterial functions. This review focusses on the role of MarR family transcriptional factors in antibiotic resistance within a select group of clinically relevant pathogens.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Antibacterianos/química , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Proteínas Represoras/metabolismo
17.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31331979

RESUMEN

Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses.IMPORTANCENeisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Neisseria gonorrhoeae/patogenicidad , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Sitios de Unión , Ácido Quenodesoxicólico/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Ácido Taurodesoxicólico/metabolismo
18.
Nat Plants ; 5(4): 352-357, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30936436

RESUMEN

Meristem fate is regulated by trehalose 6-phosphate phosphatases (TPPs), but their mechanism of action remains mysterious. Loss of the maize TPPs RAMOSA3 and TPP4 leads to reduced meristem determinacy and more inflorescence branching. However, analysis of an allelic series revealed no correlation between enzymatic activity and branching, and a catalytically inactive version of RA3 complements the ra3 mutant. Together with their nuclear localization, these findings suggest a moonlighting function for TPPs.


Asunto(s)
Meristema/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas de Plantas/fisiología , Zea mays/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/enzimología , Meristema/crecimiento & desarrollo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
19.
Nat Commun ; 9(1): 1139, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556010

RESUMEN

Streptomycetes are notable for their complex life cycle and production of most clinically important antibiotics. A key factor that controls entry into development and the onset of antibiotic production is the 68-residue protein, BldC. BldC is a putative DNA-binding protein related to MerR regulators, but lacks coiled-coil dimerization and effector-binding domains characteristic of classical MerR proteins. Hence, the molecular function of the protein has been unclear. Here we show that BldC is indeed a DNA-binding protein and controls a regulon that includes other key developmental regulators. Intriguingly, BldC DNA-binding sites vary significantly in length. Our BldC-DNA structures explain this DNA-binding capability by revealing that BldC utilizes a DNA-binding mode distinct from MerR and other known regulators, involving asymmetric head-to-tail oligomerization on DNA direct repeats that results in dramatic DNA distortion. Notably, BldC-like proteins radiate throughout eubacteria, establishing BldC as the founding member of a new structural family of regulators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Bacterianos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Estructura Cuaternaria de Proteína , Regulón , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas Represoras/genética , Electricidad Estática , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo
20.
Genes Dev ; 31(15): 1549-1560, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864445

RESUMEN

Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/patogenicidad , Islas Genómicas/genética , Guanosina Tetrafosfato/metabolismo , Tularemia/microbiología , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Bioterrorismo/prevención & control , Células Cultivadas , Cristalografía , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/genética , Humanos , Macrófagos/metabolismo , Conformación Proteica , Transcripción Genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA