Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Malar J ; 23(1): 205, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982475

RESUMEN

BACKGROUND: Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. Pathogen genomic surveillance could be invaluable for monitoring current and emerging parasite drug resistance. METHODS: Data from two decades (2000-2020) of continuous molecular surveillance of P. falciparum parasites from Senegal were retrospectively examined to assess historical changes in malaria drug resistance mutations. Several known drug resistance markers and their surrounding haplotypes were profiled using a combination of single nucleotide polymorphism (SNP) molecular surveillance and whole genome sequence based population genomics. RESULTS: This dataset was used to track temporal changes in drug resistance markers whose timing correspond to historically significant events such as the withdrawal of chloroquine (CQ) and the introduction of sulfadoxine-pyrimethamine (SP) in 2003. Changes in the mutation frequency at Pfcrt K76T and Pfdhps A437G coinciding with the 2014 introduction of seasonal malaria chemoprevention (SMC) in Senegal were observed. In 2014, the frequency of Pfcrt K76T increased while the frequency of Pfdhps A437G declined. Haplotype-based analyses of Pfcrt K76T showed that this rapid increase was due to a recent selective sweep that started after 2014. DISCUSSION (CONCLUSION): The rapid increase in Pfcrt K76T is troubling and could be a sign of emerging amodiaquine (AQ) resistance in Senegal. Emerging AQ resistance may threaten the future clinical efficacy of artesunate-amodiaquine (ASAQ) and AQ-dependent SMC chemoprevention. These results highlight the potential of molecular surveillance for detecting rapid changes in parasite populations and stress the need to monitor the effectiveness of AQ as a partner drug for artemisinin-based combination therapy (ACT) and for chemoprevention.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Mutación , Plasmodium falciparum , Senegal , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Estudios Retrospectivos , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Haplotipos , Proteínas de Transporte de Membrana/genética
2.
Nat Microbiol ; 8(7): 1213-1226, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169919

RESUMEN

Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.


Asunto(s)
Cloroquina , Malaria Falciparum , Humanos , Sistemas de Transporte de Aminoácidos/metabolismo , Cloroquina/metabolismo , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
3.
Parasitol Int ; 91: 102653, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36007706

RESUMEN

In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.


Asunto(s)
Malaria , Parásitos , Animales , Mapeo Cromosómico/métodos , Cruzamientos Genéticos , Humanos , Malaria/parasitología , Masculino , Ratones , Roedores
4.
iScience ; 25(4): 104095, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35372813

RESUMEN

Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success. We detected a robust quantitative trait locus (QTL) at kelch13 in both crosses but did not detect QTLs at four other candidate loci. QTLs were detected using synchronized, but not unsynchronized progeny pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools, expanding the utility of this approach. We conclude that BSA provides a powerful approach for investigating the genetic architecture of drug resistance in Plasmodium falciparum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...