Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Med Genomics ; 16(1): 260, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875894

RESUMEN

BACKGROUND: While Mycobacterium tuberculosis complex (MTBC) variants are clonal, variant tuberculosis is a human-adapted pathogen, and variant bovis infects many hosts. Despite nucleotide identity between MTBC variants exceeding 99.95%, it remains unclear what drives these differences. Markers of adaptation into variants were sought by bacterial genome-wide association study of single nucleotide polymorphisms extracted from 6,362 MTBC members from varied hosts and countries. RESULTS: The search identified 120 genetic loci associated with MTBC variant classification and certain hosts. In many cases, these changes are uniformly fixed in certain variants while absent in others in this dataset, providing good discriminatory power in distinguishing variants by polymorphisms. Multiple changes were seen in genes for cholesterol and fatty acid metabolism, pathways previously proposed to be important for host adaptation, including Mce4F (part of the fundamental cholesterol intake Mce4 pathway), 4 FadD and FadE genes (playing roles in cholesterol and fatty acid utilization), and other targets like Rv3548c and PTPB, genes shown essential for growth on cholesterol by transposon studies. CONCLUSIONS: These findings provide a robust set of genetic loci associated with the split of variant bovis and variant tuberculosis, and suggest that adaptation to new hosts could involve adjustments in uptake and catabolism of cholesterol and fatty acids, like the proposed specialization to different populations in MTB lineages by alterations to host lipid composition. Future studies are required to elucidate how the associations between cholesterol profiles and pathogen utilization differences between hosts and MTBC variants, as well as the investigation of uncharacterized genes discovered in this study. This information will likely provide an understanding on the diversification of MBO away from humans and specialization towards a broad host range.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Mycobacterium tuberculosis/genética , Tuberculosis/genética , Tuberculosis/microbiología , Colesterol , Ácidos Grasos
2.
Sci Rep ; 13(1): 12402, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524777

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC) organisms, affects a range of humans and animals globally. Mycobacterial pathogenesis involves manipulation of the host immune system, partially through antigen presentation. Epitope sequences across the MTBC are evolutionarily hyperconserved, suggesting their recognition is advantageous for the bacterium. Mycobacterium tuberculosis var. bovis (MBO) strain Ravenel is an isolate known to provoke a robust immune response in cattle, but typically fails to produce lesions and persist. Unlike attenuated MBO BCG strains that lack the critical RD1 genomic region, Ravenel is classic-type MBO structurally, suggesting genetic variation is responsible for defective pathogenesis. This work explores variation in epitope sequences in MBO Ravenel by whole genome sequencing, and contrasts such variation against a fully virulent clinical isolate, MBO strain 10-7428. Validated MTBC epitopes (n = 4818) from the Immune Epitope Database were compared to their sequences in MBO Ravenel and MBO 10-7428. Ravenel yielded 3 modified T cell epitopes, in genes rpfB, argC, and rpoA. These modifications were predicted to have little effect on protein stability. In contrast, T cells epitopes in 10-7428 were all WT. Considering T cell epitope hyperconservation across MTBC variants, these altered MBO Ravenel epitopes support their potential contribution to overall strain attenuation. The affected genes may provide clues on basic pathogenesis, and if so, be feasible targets for reverse vaccinology.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Bovinos , Mycobacterium bovis/genética , Epítopos de Linfocito T/genética , Mycobacterium tuberculosis/genética , Tuberculosis/veterinaria
3.
Pathogens ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422582

RESUMEN

Mycobacterium tuberculosis variant bovis (MBO) has one of the widest known mammalian host ranges, including humans. Despite the characterization of this pathogen in the 1800s and whole genome sequencing of a UK strain (AF2122) nearly two decades ago, the basis of its host specificity and pathogenicity remains poorly understood. Recent experimental calf infection studies show that MBO strain Ravenel (MBO Ravenel) is attenuated in the cattle host compared to other pathogenic strains of MBO. In the present study, experimental infections were performed to define attenuation. Whole genome sequencing was completed to identify regions of differences (RD) and single nucleotide polymorphisms (SNPs) to explain the observed attenuation. Comparative genomic analysis of MBO Ravenel against three pathogenic strains of MBO (strains AF2122-97, 10-7428, and 95-1315) was performed. Experimental infection studies on five calves each, with either MBO Ravenel or 95-1315, revealed no visible lesions in all five animals in the Ravenel group despite robust IFN-γ responses. Out of 486 polymorphisms in the present analysis, 173 were unique to MBO Ravenel among the strains compared. A high-confidence subset of nine unique SNPs were missense mutations in genes with annotated functions impacting two major MBO survival and virulence pathways: (1) Cell wall synthesis & transport [espH (A103T), mmpL8 (V888I), aftB (H484Y), eccC5 (T507M), rpfB (E263G)], and (2) Lipid metabolism & respiration [mycP1(T125I), pks5 (G455S), fadD29 (N231S), fadE29 (V360G)]. These substitutions likely contribute to the observed attenuation. Results from experimental calf infections and the functional attributions of polymorphic loci on the genome of MBO Ravenel provide new insights into the strain's genotype-disease phenotype associations.

4.
Microbiol Resour Announc ; 10(36): e0061421, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498927

RESUMEN

This report describes the genome sequences of two Mycobacterium tuberculosis isolates, S1 and S3, recovered from Asian elephants in Nepal. These genome sequences will enhance our understanding of the genomic epidemiology of Mycobacterium tuberculosis in Asian elephants.

5.
Microbiol Resour Announc ; 10(36): e0067121, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498929

RESUMEN

Members of the Mycobacterium tuberculosis complex cause tuberculosis, infamous for enormous impacts on human health. As zoonoses, they also threaten endangered species like African/Asian elephants. We report the whole-genome sequences of Mycobacterium tuberculosis bv. tuberculosis and Mycobacterium tuberculosis bv. bovis from two zoo elephants in the United States.

6.
Microbiol Resour Announc ; 10(24): e0041121, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137637

RESUMEN

We report the draft genomes of two Mycobacterium tuberculosis biovar bovis strains. Strain Ravenel was isolated in the 1900s and has been shown to be attenuated in cattle. Strain 10-7428 is considered highly pathogenic in cattle and was isolated from a bovine tuberculosis outbreak.

7.
BMC Genomics ; 15: 946, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25475368

RESUMEN

BACKGROUND: The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein. RESULTS: Over 300 homologues were identified, including 80 unannotated genes. The ability of both closely-related and divergent homologues to complement the E. coli ΔcydX mutant supports our identification techniques, and suggests that CydX homologues retain similar function among divergent species. However, sequence analysis of these proteins shows a great degree of variability, with only a few highly-conserved residues. An analysis of the co-variation between CydX homologues and their corresponding cydA and cydB genes shows a close synteny of the small protein with the CydA long Q-loop. Phylogenetic analysis suggests that the cydABX operon has undergone horizontal gene transfer, although the cydX gene likely evolved in a progenitor of the Alpha, Beta, and Gammaproteobacteria. Further investigation of cydAB operons identified two additional conserved hypothetical small proteins: CydY encoded in CydAQlong operons that lack cydX, and CydZ encoded in more than 150 CydAQshort operons. CONCLUSIONS: This study provides a systematic analysis of bioinformatics techniques required for the unique challenges present in small protein identification and phylogenetic analyses. These results elucidate the prevalence of CydX throughout the Proteobacteria, provide insight into the selection pressure and sequence requirements for CydX function, and suggest a potential functional interaction between the small protein and the CydA Q-loop, an enigmatic domain of the cytochrome bd oxidase complex. Finally, these results identify other conserved small proteins encoded in cytochrome bd oxidase operons, suggesting that small protein subunits may be a more common component of these enzymes than previously thought.


Asunto(s)
Citocromos/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas de Escherichia coli/genética , Evolución Molecular , Oxidorreductasas/genética , Alelos , Secuencia de Aminoácidos , Biología Computacional/métodos , Secuencia Conservada , Grupo Citocromo b , Citocromos/química , Citocromos/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Orden Génico , Transferencia de Gen Horizontal , Prueba de Complementación Genética , Genoma Bacteriano , Genómica , Interacciones Hidrofóbicas e Hidrofílicas , Cadenas de Markov , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Mutación , Operón , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Filogenia , Posición Específica de Matrices de Puntuación , Dominios y Motivos de Interacción de Proteínas , Proteobacteria/genética , Proteobacteria/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
8.
J Bacteriol ; 195(16): 3640-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749980

RESUMEN

Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity. In addition, cell membrane extracts from ΔcydX mutant strains have reduced oxidase activity in vitro. Consistent with data showing that CydX is required for cytochrome bd oxidase activity, copurification experiments indicate that CydX interacts with the CydAB cytochrome bd oxidase complex. Together, these data support the hypothesis that CydX is a subunit of the CydAB cytochrome bd oxidase complex that is required for complex activity. The results of mutation analysis of CydX suggest that few individual amino acids in the small protein are essential for function, at least in the context of protein overexpression. In addition, the results of analysis of the paralogous small transmembrane protein AppX show that the two proteins could have some overlapping functionality in the cell and that both have the potential to interact with the CydAB complex.


Asunto(s)
Citocromos/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Grupo Citocromo b , Citocromos/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Mutación , Oxidorreductasas/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA