Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 2474, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171772

RESUMEN

Diabetes is a global health problem caused primarily by the inability of pancreatic ß-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of ß-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic ßV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 ß-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in ß-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of ß-cells in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Gluconeogénesis , Glucólisis , Secreción de Insulina , Metabolómica , Ratones , Ratones Transgénicos , NAD/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Canales de Potasio de Rectificación Interna/genética , Proteómica
2.
Cell Metab ; 26(1): 17-23, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683284

RESUMEN

Elevated plasma glucose leads to pancreatic ß cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this "glucotoxicity" via dysregulated biochemical pathways promoting ß cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in ß cells in normoglycemia and in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glucógeno/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Enfermedad del Almacenamiento de Glucógeno/sangre , Enfermedad del Almacenamiento de Glucógeno/complicaciones , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Humanos , Células Secretoras de Insulina/patología , Transducción de Señal
3.
J Endocrinol ; 233(3): 217-227, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28348116

RESUMEN

Type 2 diabetes (T2DM) is associated with pancreatic islet dysfunction. Loss of ß-cell identity has been implicated via dedifferentiation or conversion to other pancreatic endocrine cell types. How these transitions contribute to the onset and progression of T2DM in vivo is unknown. The aims of this study were to determine the degree of epithelial-to-mesenchymal transition occurring in α and ß cells in vivo and to relate this to diabetes-associated (patho)physiological conditions. The proportion of islet cells expressing the mesenchymal marker vimentin was determined by immunohistochemistry and quantitative morphometry in specimens of pancreas from human donors with T2DM (n = 28) and without diabetes (ND, n = 38) and in non-human primates at different stages of the diabetic syndrome: normoglycaemic (ND, n = 4), obese, hyperinsulinaemic (HI, n = 4) and hyperglycaemic (DM, n = 8). Vimentin co-localised more frequently with glucagon (α-cells) than with insulin (ß-cells) in the human ND group (1.43% total α-cells, 0.98% total ß-cells, median; P < 0.05); these proportions were higher in T2DM than ND (median 4.53% α-, 2.53% ß-cells; P < 0.05). Vimentin-positive ß-cells were not apoptotic, had reduced expression of Nkx6.1 and Pdx1, and were not associated with islet amyloidosis or with bihormonal expression (insulin + glucagon). In non-human primates, vimentin-positive ß-cell proportion was larger in the diabetic than the ND group (6.85 vs 0.50%, medians respectively, P < 0.05), but was similar in ND and HI groups. In conclusion, islet cell expression of vimentin indicates a degree of plasticity and dedifferentiation with potential loss of cellular identity in diabetes. This could contribute to α- and ß-cell dysfunction in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Vimentina/metabolismo , Animales , Estudios de Casos y Controles , Células Cultivadas , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/veterinaria , Macaca fascicularis , Macaca mulatta
4.
Nat Commun ; 7: 13496, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882918

RESUMEN

Insulin secretion from pancreatic ß-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including ß-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in ß-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores ß-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered ß-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced ß-cell mass in diabetes.


Asunto(s)
Apoptosis/fisiología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucógeno/metabolismo , Hiperglucemia/metabolismo , Enfermedades del Recién Nacido/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Glucemia/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Glucoquinasa/genética , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Recién Nacido , Insulina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Mutación , Ratas , Compuestos de Sulfonilurea/farmacología
5.
J Histochem Cytochem ; 63(8): 575-91, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-26216135

RESUMEN

Islet non-ß-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca(2+)-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-ß-cells to central areas of the islet. In diabetes, the transdifferentiation of non-ß-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-ß-cells contribute to the control of islet function.


Asunto(s)
Islotes Pancreáticos/anatomía & histología , Islotes Pancreáticos/citología , Animales , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/ultraestructura , Microscopía Electrónica
6.
Nat Commun ; 5: 4639, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25145789

RESUMEN

Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that ß-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some ß-cells begin expressing glucagon, whilst retaining many ß-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/patología , Hiperglucemia/patología , Islotes Pancreáticos/ultraestructura , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Modelos Animales de Enfermedad , Electrofisiología/métodos , Gliburida/farmacología , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Insulina/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Canales KATP/antagonistas & inhibidores , Canales KATP/metabolismo , Ratones Transgénicos , Mutación , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo
7.
Diabetes ; 62(11): 3797-806, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23903354

RESUMEN

Loss-of-function mutations in the KATP channel genes KCNJ11 and ABCC8 cause neonatal hyperinsulinism in humans. Dominantly inherited mutations cause less severe disease, which may progress to glucose intolerance and diabetes in later life (e.g., SUR1-E1506K). We generated a mouse expressing SUR1-E1506K in place of SUR1. KATP channel inhibition by MgATP was enhanced in both homozygous (homE1506K) and heterozygous (hetE1506K) mutant mice, due to impaired channel activation by MgADP. As a consequence, mutant ß-cells showed less on-cell KATP channel activity and fired action potentials in glucose-free solution. HomE1506K mice exhibited enhanced insulin secretion and lower fasting blood glucose within 8 weeks of birth, but reduced insulin secretion and impaired glucose tolerance at 6 months of age. These changes correlated with a lower insulin content; unlike wild-type or hetE1506K mice, insulin content did not increase with age in homE1506K mice. There was no difference in the number and size of islets or ß-cells in the three types of mice, or evidence of ß-cell proliferation. We conclude that the gradual development of glucose intolerance in patients with the SUR1-E1506K mutation might, as in the mouse model, result from impaired insulin secretion due a failure of insulin content to increase with age.


Asunto(s)
Hiperinsulinismo/genética , Islotes Pancreáticos/fisiopatología , Receptores de Sulfonilureas/genética , Envejecimiento/fisiología , Animales , Glucemia/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Heterocigoto , Homocigoto , Humanos , Insulina/metabolismo , Secreción de Insulina , Canales KATP/fisiología , Ratones , Bloqueadores de los Canales de Potasio/farmacología
8.
Diabetes Care ; 36(8): 2311-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23462667

RESUMEN

OBJECTIVE: Activating mutations in the KCNJ11 gene, encoding the Kir6.2 subunit of the KATP channel, result in permanent neonatal diabetes mellitus. They also may cause neurologic symptoms such as mental retardation and motor problems (iDEND syndrome) and epilepsy (DEND syndrome). Sulphonylurea (SU) treatment is reported to alleviate both the neurologic symptoms and diabetes in such cases. The study aimed to establish the magnitude and functional basis of the effect of SUs on the neurologic phenotype in children with iDEND using neuroimaging before and after insulin replacement with glibenclamide. RESEARCH DESIGN AND METHODS: To localize and quantify the effect of glibenclamide administration, we performed single-photon emission computed tomography in seven patients with different mutations in KCNJ11. In five patients, measurements before and after initiation of SU treatment were performed. RESULTS Significant changes in single-photon emission computed tomography signal intensity after transfer to SU therapy were restricted to the cerebellum, consistent with previous data showing high Kir6.2 expression in this brain region. Cerebellar perfusion improved for both left (P = 0.006) and right (P = 0.01) hemispheres, with the mean improvement being 26.7 ± 7.1% (n = 5). No patients showed deterioration of cerebellar perfusion on SU therapy. Electrophysiological studies revealed a good correlation between the magnitude of KATP channel dysfunction and the clinical phenotype; mutant channels with the greatest reduction in adenosine 5'-triphosphate inhibition were associated with the most severe neurologic symptoms. CONCLUSIONS: We conclude it is likely that at least some of the beneficial effects of SU treatment on neurodevelopment in iDEND patients result from improved cerebellar perfusion.


Asunto(s)
Cerebelo/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Canales de Potasio de Rectificación Interna/genética , Compuestos de Sulfonilurea/uso terapéutico , Adolescente , Cerebelo/irrigación sanguínea , Cerebelo/efectos de los fármacos , Niño , Preescolar , Femenino , Gliburida/uso terapéutico , Humanos , Lactante , Recién Nacido , Masculino , Canales de Potasio de Rectificación Interna/biosíntesis , Tomografía Computarizada de Emisión de Fotón Único
9.
PLoS One ; 8(2): e57451, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437391

RESUMEN

Adequate blood flow through placental chorionic plate resistance arteries (CPAs) is necessary for oxygen and nutrient transfer to the fetus and a successful pregnancy. In non-placental vascular smooth muscle cells (SMCs), K(+) channels regulate contraction, vascular tone and blood flow. Previous studies showed that K(+) channel modulators alter CPA tone, but did not distinguish between effects on K(+) channels in endothelial cells and SMCs. In this study, we developed a preparation of freshly isolated CPASMCs of normal pregnancy and investigated K(+) channel expression and function. CPASMCs were isolated from normal human term placentas using enzymatic digestion. Purity and phenotype was confirmed with immunocytochemistry. Whole-cell patch clamp was used to assess K(+) channel currents, and mRNA and protein expression was determined in intact CPAs and isolated SMCs with RT-PCR and immunostaining. Isolated SMCs expressed α-actin but not CD31, a marker of endothelial cells. CPASMCs and intact CPAs expressed h-caldesmon and non-muscle myosin heavy chain-2; phenotypic markers of contractile and synthetic SMCs respectively. Whole-cell currents were inhibited by 4-AP, TEA, charybdotoxin and iberiotoxin implicating functional K(v) and BK(Ca) channels. 1-EBIO enhanced whole cell currents which were abolished by TRAM-34 and reduced by apamin indicating activation of IK(Ca) and SK(Ca) respectively. BK(Ca), IK(Ca) and SK(Ca)3 mRNA and/or protein were expressed in CPASMCs and intact CPAs. This study provides the first direct evidence for functional K(v), BK(Ca,) IK(Ca) and SK(Ca) channels in CPASMCs. These cells display a mixed phenotype implicating a dual role for CPASMCs in controlling both fetoplacental vascular resistance and vasculogenesis.


Asunto(s)
Corion/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placenta/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Actinas/genética , Actinas/metabolismo , Calcio/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Corion/irrigación sanguínea , Corion/citología , Corion/efectos de los fármacos , Femenino , Feto , Expresión Génica/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Técnicas de Placa-Clamp , Placenta/irrigación sanguínea , Placenta/citología , Placenta/efectos de los fármacos , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/clasificación , Canales de Potasio Calcio-Activados/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/clasificación , Canales de Potasio con Entrada de Voltaje/genética , Embarazo
10.
Drug Discov Today Dis Models ; 10(2): e101-e109, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-29643927

RESUMEN

ATP-sensitive K+ (KATP) channels in pancreatic ß-cells couple glucose metabolism to insulin secretion. Reduced KATP channel activity produces excessive insulin release and hyperinsulinism whereas increased KATP channel activity leads to lower insulin secretion and diabetes. Paradoxically, mice with genetic deletion of KATP channels, or loss-of-function mutations, are only transiently hypoglycaemic during the neonatal period and often display reduced glucose-stimulated insulin secretion subsequently. Mice with KATP channel gain-of-function mutations are hyperglycaemic and have impaired glucose-stimulated insulin secretion, a phenotype that accurately mimics human diabetes. This review discusses how mice expressing altered KATP channels have provided valuable insight into ß-cell function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...