Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Microbiol ; 175(1-2): 104110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37544391

RESUMEN

Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different Acidithiobacillus (At.) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the At. ferrooxidans type strain with 6.8 × 106 and 1.1 × 107 reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon Ferroplasma acidiphilum, and lowest for the sulfur grown At. caldus type strain under aerobic conditions (1.7 × 106 and 7.3 × 104 reduced iron(III) ions per second per cell, respectively). The rates for five strains of At. thiooxidans (aerobe) were in between those for At. ferrooxidans (anaerobe) and At. caldus (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0-1.9 for the type strains of all species but rates increased with increasing pH for four other At. thiooxidans strains. Thiosulfate as sulfur intermediate was found for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the At. thiooxidans type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the At. ferrooxidans as well as the At. thiooxidans type strains during microaerophilic growth on elemental sulfur and for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.


Asunto(s)
Acidithiobacillus , Hierro , Hierro/metabolismo , Tiosulfatos/metabolismo , Oxidación-Reducción , Acidithiobacillus/metabolismo , Azufre/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-34236956

RESUMEN

A mixotrophic and acidophilic bacterial strain BGR 140T was isolated from mine tailings in the Harz Mountains near Goslar, Germany. Cells of BGR 140T were Gram-stain-positive, endospore-forming, motile and rod-shaped. BGR 140T grew aerobically at 25-55 °C (optimum 45 °C) and at pH 1.5-5.0 (optimum pH 3.0). The results of analysis of the 16S rRNA gene sequences indicated that BGR 140T was phylogenetically related to different members of the genus Sulfobacillus, and the sequence identities to Sulfobacillus acidophilus DSM 10332T, Sulfobacillus thermotolerans DSM 17362T, and Sulfobacillus benefaciens DSM 19468T were 94.8, 91.8 and 91.6 %, respectively. Its cell wall peptidoglycan is A1γ, composed of meso-diaminopimelic acid. The respiratory quinone is DMK-6. The major polar lipids were determined to be glycolipid, phospholipid and phosphatidylglycerol. The predominant fatty acid is 11-cycloheptanoyl-undecanoate. The genomic DNA G+C content is 58.2 mol%. On the basis of the results of phenotypic and genomic analyses, it is concluded that strain BGR 140T represents a novel species of the genus Sulfobacillus, for which the name Sulfobacillus harzensis sp. nov. is proposed because of its origin. Its type strain is BGR 140T (=DSM 109850T=JCM 39070T).


Asunto(s)
Clostridiales/clasificación , Minería , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Alemania , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
ISME J ; 11(2): 529-542, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27754478

RESUMEN

Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Respiraderos Hidrotermales/microbiología , Consorcios Microbianos , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Ambiente , Sedimentos Geológicos/química , Calor , Metano/análisis , Océanos y Mares , Filogenia , ARN Ribosómico/química , ARN Ribosómico/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Sulfatos/análisis
4.
Appl Environ Microbiol ; 80(19): 6126-35, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063666

RESUMEN

The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Archaea/genética , Bacterias/genética , Secuencia de Bases , Análisis por Conglomerados , Cartilla de ADN/genética , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Ecosistema , Expediciones , Geografía , Sedimentos Geológicos/química , Respiraderos Hidrotermales , Océanos y Mares , ARN Ribosómico 16S/genética , Agua de Mar/química , Análisis de Secuencia de ADN
5.
ISME J ; 8(7): 1370-80, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24430485

RESUMEN

The subsurface realm is colonized by microbial communities to depths of >1000 meters below the seafloor (m.b.sf.), but little is known about overall diversity and microbial distribution patterns at the most profound depths. Here we show that not only Bacteria and Archaea but also Eukarya occur at record depths in the subseafloor of the Canterbury Basin. Shifts in microbial community composition along a core of nearly 2 km reflect vertical taxa zonation influenced by sediment depth. Representatives of some microbial taxa were also cultivated using methods mimicking in situ conditions. These results suggest that diverse microorganisms persist down to 1922 m.b.sf. in the seafloor of the Canterbury Basin and extend the previously known depth limits of microbial evidence (i) from 159 to 1740 m.b.sf. for Eukarya and (ii) from 518 to 1922 m.b.sf. for Bacteria.


Asunto(s)
Archaea/genética , Bacterias/genética , Sedimentos Geológicos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Eucariontes/clasificación , Eucariontes/genética , Presión Hidrostática , Nueva Zelanda , ARN Ribosómico 16S/clasificación , ARN Ribosómico 18S/clasificación , ARN Ribosómico 18S/genética
6.
Front Microbiol ; 4: 327, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24265628

RESUMEN

During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

7.
FEMS Microbiol Ecol ; 85(3): 578-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23656380

RESUMEN

The investigated deeply buried marine sediments of the shallow shelf off New Jersey, USA, are characterized by low organic carbon content and total cell counts of < 10(7) cells per mL sediment. The qPCR data for Bacteria and Archaea were in the same orders of magnitude as the total cell counts. Archaea and Bacteria occurred in similar 16S rRNA gene copy numbers in the upper part of the sediments, but Bacteria dominated in the lowermost part of the analyzed sediment cores down to a maximum analyzed depth of c. 50 meters below seafloor (mbsf). The bacterial candidate division JS1 and the classes Anaerolineae and Caldinilineae of the Chloroflexi were almost as highly abundant as the total Bacteria. Similarly high dsrA gene copy numbers were found for sulfate reducers. The abundance of the Fe(III) and Mn(IV) reducers comprising Geobacteraceae in the upper c. 15 mbsf correlated with concentrations of manganese and iron in the pore water. The isolated 16S rRNA gene sequences of Archaea in clone libraries could be allocated to the phyla Thaumarchaeota, Euryarchaeota, and Crenarchaeota with 1%, 14%, and 85%, respectively. The typical deep subsurface sediment-associated groups MBG-B, MBG-D, MCG, and SAGMEG were represented in the sediment community. MCG was the dominant group with a high diversity of the isolated 16S rRNA gene sequences.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Sedimentos Geológicos/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , Crenarchaeota/clasificación , Crenarchaeota/genética , Crenarchaeota/aislamiento & purificación , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Euryarchaeota/genética , Euryarchaeota/aislamiento & purificación , Expediciones , New Jersey , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética
8.
Front Microbiol ; 2: 156, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811489

RESUMEN

For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers. The gene mcrA of methanogens was not detectable. Cloning and sequencing data of 16S rRNA genes revealed sequences of typical soil Bacteria. The closest relatives of the archaeal sequences were Archaea recovered from terrestrial and marine environments. Phylogenetic analysis of the Crenarchaeota and Euryarchaeota revealed new members of the uncultured South African Gold Mine Group, Deep Sea Hydrothermal Vent Euryarchaeotal Group 6, and Miscellaneous Crenarcheotic Group clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...