Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(1): e1010850, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175823

RESUMEN

Inherited and germ-line de novo copy number variants (CNVs) are increasingly found to be correlated with human developmental and cancerous phenotypes. Several models for template switching during replication have been proposed to explain the generation of these gross chromosomal rearrangements. We proposed a model of template switching (ODIRA-origin dependent inverted repeat amplification) in which simultaneous ligation of the leading and lagging strands at diverging replication forks could generate segmental inverted triplications through an extrachromosomal inverted circular intermediate. Here, we created a genetic assay using split-ura3 cassettes to trap the proposed inverted intermediate. However, instead of recovering circular inverted intermediates, we found inverted linear chromosomal fragments ending in native telomeres-suggesting that a template switch had occurred at the centromere-proximal fork of a replication bubble. As telomeric inverted hairpin fragments can also be created through double strand breaks we tested whether replication errors or repair of double stranded DNA breaks were the most likely initiating event. The results from CRISPR/Cas9 cleavage experiments and growth in the replication inhibitor hydroxyurea indicate that it is a replication error, not a double stranded break that creates the inverted junctions. Since inverted amplicons of the SUL1 gene occur during long-term growth in sulfate-limited chemostats, we sequenced evolved populations to look for evidence of linear intermediates formed by an error in replication. All of the data are compatible with a two-step version of the ODIRA model in which sequential template switching at short inverted repeats between the leading and lagging strands at a replication fork, followed by integration via homologous recombination, generates inverted interstitial triplications.


Asunto(s)
Variaciones en el Número de Copia de ADN , Replicación del ADN , Humanos , Replicación del ADN/genética , Variaciones en el Número de Copia de ADN/genética , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , ADN
2.
PLoS Genet ; 20(1): e1011091, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175827

RESUMEN

With the release of the telomere-to-telomere human genome sequence and the availability of both long-read sequencing and optical genome mapping techniques, the identification of copy number variants (CNVs) and other structural variants is providing new insights into human genetic disease. Different mechanisms have been proposed to account for the novel junctions in these complex architectures, including aberrant forms of DNA replication, non-allelic homologous recombination, and various pathways that repair DNA breaks. Here, we have focused on a set of structural variants that include an inverted segment and propose that they share a common initiating event: an inverted triplication with long, unstable palindromic junctions. The secondary rearrangement of these palindromes gives rise to the various forms of inverted structural variants. We postulate that this same mechanism (ODIRA: origin-dependent inverted-repeat amplification) that creates the inverted CNVs in inherited syndromes also generates the palindromes found in cancers.


Asunto(s)
Variaciones en el Número de Copia de ADN , Recombinación Homóloga , Humanos , Variaciones en el Número de Copia de ADN/genética , Secuencia de Bases , Replicación del ADN/genética , Secuencias Invertidas Repetidas
3.
Cell Rep ; 42(3): 112161, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36842087

RESUMEN

Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anafase , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Ribosomas/metabolismo , Replicación del ADN/genética , Replicación Viral
4.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702776

RESUMEN

Evolution is driven by the accumulation of competing mutations that influence survival. A broad form of genetic variation is the amplification or deletion of DNA (≥50 bp) referred to as copy number variation (CNV). In humans, CNV may be inconsequential, contribute to minor phenotypic differences, or cause conditions such as birth defects, neurodevelopmental disorders, and cancers. To identify mechanisms that drive CNV, we monitored the experimental evolution of Saccharomyces cerevisiae populations grown under sulfate-limiting conditions. Cells with increased copy number of the gene SUL1, which encodes a primary sulfate transporter, exhibit a fitness advantage. Previously, we reported interstitial inverted triplications of SUL1 as the dominant rearrangement in a haploid population. Here, in a diploid population, we find instead that small linear fragments containing SUL1 form and are sustained over several generations. Many of the linear fragments are stabilized by de novo telomere addition within a telomere-like sequence near SUL1 (within the SNF5 gene). Using an assay that monitors telomerase action following an induced chromosome break, we show that this region acts as a hotspot of de novo telomere addition and that required sequences map to a region of <250 base pairs. Consistent with previous work showing that association of the telomere-binding protein Cdc13 with internal sequences stimulates telomerase recruitment, mutation of a four-nucleotide motif predicted to associate with Cdc13 abolishes de novo telomere addition. Our study suggests that internal telomere-like sequences that stimulate de novo telomere addition can contribute to adaptation by promoting genomic plasticity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Telomerasa , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Sulfatos/metabolismo , Variaciones en el Número de Copia de ADN , Proteínas de Unión a Telómeros/genética , Telómero/genética , Telómero/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
5.
G3 (Bethesda) ; 10(1): 417-430, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31757929

RESUMEN

Individuals within a species can exhibit vast variation in copy number of repetitive DNA elements. This variation may contribute to complex traits such as lifespan and disease, yet it is only infrequently considered in genotype-phenotype associations. Although the possible importance of copy number variation is widely recognized, accurate copy number quantification remains challenging. Here, we assess the technical reproducibility of several major methods for copy number estimation as they apply to the large repetitive ribosomal DNA array (rDNA). rDNA encodes the ribosomal RNAs and exists as a tandem gene array in all eukaryotes. Repeat units of rDNA are kilobases in size, often with several hundred units comprising the array, making rDNA particularly intractable to common quantification techniques. We evaluate pulsed-field gel electrophoresis, droplet digital PCR, and Nextera-based whole genome sequencing as approaches to copy number estimation, comparing techniques across model organisms and spanning wide ranges of copy numbers. Nextera-based whole genome sequencing, though commonly used in recent literature, produced high error. We explore possible causes for this error and provide recommendations for best practices in rDNA copy number estimation. We present a resource of high-confidence rDNA copy number estimates for a set of S. cerevisiae and C. elegans strains for future use. We furthermore explore the possibility for FISH-based copy number estimation, an alternative that could potentially characterize copy number on a cellular level.


Asunto(s)
Variaciones en el Número de Copia de ADN , Técnicas de Genotipaje/métodos , Animales , Caenorhabditis elegans , Técnicas de Genotipaje/normas , Guías de Práctica Clínica como Asunto , ARN Ribosómico/genética , Saccharomyces cerevisiae , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/normas
6.
PLoS Genet ; 15(10): e1008430, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31584938

RESUMEN

Chromosome replication in Saccharomyces cerevisiae is initiated from ~300 origins that are regulated by DNA sequence and by the limited abundance of six trans-acting initiation proteins (Sld2, Sld3, Dpb11, Dbf4, Sld7 and Cdc45). We set out to determine how the levels of individual factors contribute to time of origin activation and/or origin efficiency using induced depletion of single factors and overexpression of sets of multiple factors. Depletion of Sld2 or Sld3 slows growth and S phase progression, decreases origin efficiency across the genome and impairs viability as a result of incomplete replication of the rDNA. We find that the most efficient early origins are relatively unaffected by depletion of either Sld2 or Sld3. However, Sld3 levels, and to a lesser extent Sld2 levels, are critical for firing of the less efficient early origins. Overexpression of Sld3 simultaneously with Sld2, Dpb11 and Dbf4 preserves the relative efficiency of origins. Only when Cdc45 and Sld7 are also overexpressed is origin efficiency equalized between early- and late-firing origins. Our data support a model in which Sld3 together with Cdc45 (and/or Sld7) is responsible for the differential efficiencies of origins across the yeast genome.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Proteínas de Ciclo Celular/genética , Duplicación Cromosómica , Cromosomas Fúngicos , Origen de Réplica , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética
7.
Genetics ; 213(1): 229-249, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31292210

RESUMEN

The complex structure and repetitive nature of eukaryotic ribosomal DNA (rDNA) is a challenge for genome assembly, thus the consequences of sequence variation in rDNA remain unexplored. However, renewed interest in the role that rDNA variation may play in diverse cellular functions, aside from ribosome production, highlights the need for a method that would permit genetic manipulation of the rDNA. Here, we describe a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to edit the rDNA locus in the budding yeast Saccharomyces cerevisiae, developed independently but similar to one developed by others. Using this approach, we modified the endogenous rDNA origin of replication in each repeat by deleting or replacing its consensus sequence. We characterized the transformants that have successfully modified their rDNA locus and propose a mechanism for how CRISPR/Cas9-mediated editing of the rDNA occurs. In addition, we carried out extended growth and life span experiments to investigate the long-term consequences that altering the rDNA origin of replication have on cellular health. We find that long-term growth of the edited clones results in faster-growing suppressors that have acquired segmental aneusomy of the rDNA-containing region of chromosome XII or aneuploidy of chromosomes XII, II, or IV. Furthermore, we find that all edited isolates suffer a reduced life span, irrespective of their levels of extrachromosomal rDNA circles. Our work demonstrates that it is possible to quickly, efficiently, and homogeneously edit the rDNA origin via CRISPR/Cas9.


Asunto(s)
Sistemas CRISPR-Cas , ADN Ribosómico/genética , Edición Génica/métodos , Origen de Réplica , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Secuencia de Consenso , Aptitud Genética , Genotipo , Fenotipo
8.
PLoS Genet ; 13(10): e1007041, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29036220

RESUMEN

A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Microtia Congénita/genética , Replicación del ADN/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Complejo de Reconocimiento del Origen/genética , Rótula/anomalías , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos/genética , Rotura Cromosómica , ADN Ribosómico/genética , Humanos , Mutación Missense , Rótula/fisiología , ARN Ribosómico , Saccharomyces cerevisiae/genética
9.
G3 (Bethesda) ; 6(9): 2829-38, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27449518

RESUMEN

The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Replicación del ADN/genética , ADN Ribosómico/genética , Saccharomyces cerevisiae/genética , Acetatos/toxicidad , Replicación del ADN/efectos de los fármacos , ADN Ribosómico/efectos de los fármacos , Eliminación de Gen , Técnicas de Inactivación de Genes , Genoma Fúngico , Fenotipo , Ribosomas/efectos de los fármacos , Ribosomas/genética , Saccharomyces cerevisiae/efectos de los fármacos
10.
PLoS Genet ; 11(12): e1005699, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26700858

RESUMEN

DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.


Asunto(s)
Replicación del ADN , Amplificación de Genes , Secuencias Invertidas Repetidas , Modelos Genéticos , Origen de Réplica , Saccharomyces cerevisiae/genética
11.
PLoS Genet ; 11(6): e1005289, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26070154

RESUMEN

In bacteria the concurrence of DNA replication and transcription leads to potentially deleterious encounters between the two machineries, which can occur in either the head-on (lagging strand genes) or co-directional (leading strand genes) orientations. These conflicts lead to replication fork stalling and can destabilize the genome. Both eukaryotic and prokaryotic cells possess resolution factors that reduce the severity of these encounters. Though Escherichia coli accessory helicases have been implicated in the mitigation of head-on conflicts, direct evidence of these proteins mitigating co-directional conflicts is lacking. Furthermore, the endogenous chromosomal regions where these helicases act, and the mechanism of recruitment, have not been identified. We show that the essential Bacillus subtilis accessory helicase PcrA aids replication progression through protein coding genes of both head-on and co-directional orientations, as well as rRNA and tRNA genes. ChIP-Seq experiments show that co-directional conflicts at highly transcribed rRNA, tRNA, and head-on protein coding genes are major targets of PcrA activity on the chromosome. Partial depletion of PcrA renders cells extremely sensitive to head-on conflicts, linking the essential function of PcrA to conflict resolution. Furthermore, ablating PcrA's ATPase/helicase activity simultaneously increases its association with conflict regions, while incapacitating its ability to mitigate conflicts, and leads to cell death. In contrast, disruption of PcrA's C-terminal RNA polymerase interaction domain does not impact its ability to mitigate conflicts between replication and transcription, its association with conflict regions, or cell survival. Altogether, this work establishes PcrA as an essential factor involved in mitigating transcription-replication conflicts and identifies chromosomal regions where it routinely acts. As both conflicts and accessory helicases are found in all domains of life, these results are broadly relevant.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Transcripción Genética , Adenosina Trifosfato/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , ADN Helicasas/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Operón , ARN Ribosómico/genética , ARN de Transferencia/genética
12.
PLoS Genet ; 10(3): e1004169, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603708

RESUMEN

The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.


Asunto(s)
Replicación del ADN/genética , ADN/genética , Pichia/genética , Origen de Réplica/genética , Cromatina/genética , Secuencia Rica en GC/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleosomas/genética , Sitio de Iniciación de la Transcripción
13.
Genes Dev ; 28(4): 372-83, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532715

RESUMEN

Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Replicación del ADN/genética , Mutación , Fosforilación , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Temperatura
14.
G3 (Bethesda) ; 4(3): 399-409, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24368781

RESUMEN

Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.


Asunto(s)
Saccharomyces cerevisiae/genética , Adaptación Biológica , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Cinética , Mutación , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Selección Genética , Análisis de Secuencia de ADN , Transportadores de Sulfato
15.
G3 (Bethesda) ; 3(11): 1955-63, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24022751

RESUMEN

Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time.


Asunto(s)
ADN/metabolismo , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Sitios de Unión , Centrómero/genética , Centrómero/metabolismo , ADN/química , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Electroforesis en Gel Bidimensional , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Genoma Fúngico , Datos de Secuencia Molecular , Mutagénesis , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
16.
PLoS Genet ; 9(3): e1003329, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505383

RESUMEN

Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics.


Asunto(s)
Envejecimiento/genética , ADN Ribosómico/genética , Sitios de Carácter Cuantitativo/genética , Saccharomyces cerevisiae , Restricción Calórica , Replicación del ADN/genética , ADN Ribosómico/fisiología , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Longevidad/genética , Polimorfismo Genético , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Sirtuina 2/genética
17.
Genome Res ; 22(10): 1940-52, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22665441

RESUMEN

Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.


Asunto(s)
Replicación del ADN , Genoma Fúngico , Origen de Réplica , Saccharomyces cerevisiae/genética , Composición de Base , Centrómero/genética , Cromosomas Fúngicos , Secuencia de Consenso , Amplificación de Genes , Reordenamiento Génico , Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Plásmidos/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Transcripción Genética
18.
PLoS Genet ; 8(5): e1002677, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22589733

RESUMEN

The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.


Asunto(s)
Centrómero/genética , Replicación del ADN , Cinetocoros , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromosomas/genética , Cromosomas Fúngicos/genética , Fase S/genética
20.
Mol Biol Cell ; 22(10): 1753-65, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21441303

RESUMEN

DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.


Asunto(s)
Acetiltransferasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Telómero/metabolismo , Acetilación , Secuencia de Bases , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/genética , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...