RESUMEN
Inflammation and lipid regulator with UBA-like and NBR1-like domains (ILRUN) is a protein-encoding gene associated with innate immune signaling, lipid metabolism and cancer. In the context of innate immunity, ILRUN inhibits IRF3-mediated transcription of antimicrobial and proinflammatory cytokines by inducing degradation of the transcriptional coactivators CBP and p300. There remains a paucity of information, however, regarding the innate immune roles of ILRUN beyond in vitro analyses. To address this, we utilize a knockout mouse model to investigate the effect of ILRUN on cytokine expression in splenocytes and on the development of immune cell populations in the spleen and thymus. We show elevated production of tumor necrosis factor and interleukin-6 cytokines in ILRUN-deficient splenocytes following stimulation with the innate immune ligands polyinosinic:polycytidylic acid or lipopolysaccharide. Differences were also observed in the populations of several T cell subsets, including regulatory, mucosal-associated invariant and natural killer. These data identify novel functions for ILRUN in the development of certain immune cell populations and support previous in vitro findings that ILRUN negatively regulates the synthesis of pathogen-stimulated cytokines. This establishes the ILRUN knockout mouse model as a valuable resource for further study of the functions of ILRUN in health and disease.
Asunto(s)
Citocinas , Subgrupos de Linfocitos T , Ratones , Animales , Citocinas/metabolismo , Inmunidad Innata , Factores Inmunológicos/metabolismo , Adyuvantes Inmunológicos/metabolismo , Ratones NoqueadosRESUMEN
Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.
Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Isoformas de Proteínas/metabolismoRESUMEN
Viral hijacking of microtubule (MT)-dependent transport is well understood, but several viruses also express discrete MT-associated proteins (vMAPs), potentially to modulate MT-dependent processes in the host cell. Specific roles for vMAP-MT interactions include subversion of antiviral responses by P3, an isoform of the P protein of rabies virus (RABV; genus Lyssavirus), which mediates MT-dependent antagonism of interferon (IFN)-dependent signal transducers and activators of transcription 1 (STAT1) signaling. P3 also undergoes nucleocytoplasmic trafficking and inhibits STAT1-DNA binding, indicative of intranuclear roles in a multipronged antagonistic strategy. MT association/STAT1 antagonist functions of P3 correlate with pathogenesis, indicating potential as therapeutic targets. However, key questions remain, including whether other P protein isoforms interact with MTs, the relationship of these interactions with pathogenesis, and the extent of conservation of P3-MT interactions between diverse pathogenic lyssaviruses. Using super-resolution microscopy, live-cell imaging, and immune signaling analyses, we find that multiple P protein isoforms associate with MTs and that association correlates with pathogenesis. Furthermore, P3 proteins from different lyssaviruses exhibit variation in intracellular localization phenotypes that are associated with STAT1 antagonist function, whereby P3-MT association is conserved among lyssaviruses of phylogroup I but not phylogroup II, while nucleocytoplasmic localization varies between P3 proteins of the same phylogroup within both phylogroup I and II. Nevertheless, the divergent P3 proteins retain significant IFN antagonist function, indicative of adaptation to favor different inhibitory mechanisms, with MT interaction important to phylogroup I viruses. IMPORTANCE Lyssaviruses, including rabies virus, cause rabies, a progressive encephalomyelitis that is almost invariably fatal. There are no effective antivirals for symptomatic infection, and effective application of current vaccines is limited in areas of endemicity, such that rabies causes ~59,000 deaths per year. Viral subversion of host cell functions, including antiviral immunity, is critical to disease, and isoforms of the lyssavirus P protein are central to the virus-host interface underpinning immune evasion. Here, we show that specific cellular interactions of P protein isoforms involved in immune evasion vary significantly between different lyssaviruses, indicative of distinct strategies to evade immune responses. These findings highlight the diversity of the virus-host interface, an important consideration in the development of pan-lyssavirus therapeutic approaches.
Asunto(s)
Lyssavirus , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Humanos , Lyssavirus/genética , Interferones/metabolismo , Virus de la Rabia/genética , Antivirales/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ADN/metabolismoRESUMEN
The rabies virus (RABV) phosphoprotein (P protein) is expressed as several isoforms, which differ in nucleocytoplasmic localization and microtubule (MT) association, mediated by several sequences, including nuclear localization (NLS) and export (NES) sequences. This appears to underpin a functional diversity enabling multiple functions in viral replication and modulation of host biology. Mechanisms regulating trafficking are poorly defined, but phosphorylation by protein kinase C (PKC) in the P protein C-terminal domain (PCTD) regulates nuclear trafficking, mediated by PCTD-localized NLS/NES sequences, indicating that phosphorylation contributes to functional diversity. The molecular mechanism underlying the effects of PKC, and potential roles in regulating other host-cell interactions are unresolved. Here, we assess effects of phosphorylation on the P3 isoform, which differs from longer isoforms through an ability to localize to the nucleus and associate with MTs, which are associated with antagonism of interferon (IFN) signaling. We find that phosphomimetic mutation of the PKC site S210 inhibits nuclear accumulation and MT association/bundling. Structural analysis indicated that phosphomimetic mutation induces no significant structural change to the NLS/NES but results in the side chain of N226 switching its interactions from E228, within the NES, to E210. Intriguingly, N226 is the sole substituted residue between the PCTD of the pathogenic IFN-resistant RABV strain Nishigahara and a derivative attenuated IFN-sensitive strain Ni-CE, inhibiting P3 nuclear localization and MT association. Thus, S210 phosphorylation appears to impact on N226/E228 to regulate P protein localization, with N226 mutation in Ni-CE mimicking a constitutively phosphorylated state resulting in IFN sensitivity and attenuation. IMPORTANCE Rabies virus P protein is a multifunctional protein with critical roles in replication and manipulation of host-cell processes, including subversion of immunity. This functional diversity involves interactions of several P protein isoforms with the cell nucleus and microtubules. Previous studies showed that phosphorylation of the P protein C-terminal domain (PCTD) at S210, near nuclear trafficking sequences, regulates nucleocytoplasmic localization, indicating key roles in functional diversity. The molecular mechanisms of this regulation have remained unknown. Here, we show that phosphomimetic mutation of S210 regulates nuclear localization and MT association. This regulation does not appear to result from disrupted PCTD structure, but rather from a switch of specific side chain interactions of N226. Intriguingly, N226 was previously implicated in P protein nuclear localization/MT association, immune evasion, and RABV pathogenesis, through undefined mechanisms. Our data indicate that the S210-N226 interface is a key regulator of virus-host interactions, which is significant for pathogenesis.
Asunto(s)
Chaperonas Moleculares , Virus de la Rabia , Proteínas Estructurales Virales , Animales , Núcleo Celular/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismoRESUMEN
Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.
Asunto(s)
Virus de la Rabia , Núcleo Celular/metabolismo , Señales de Exportación Nuclear , Virus de la Rabia/metabolismo , Proteínas Virales/metabolismo , VirulenciaRESUMEN
The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.
Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Células CACO-2 , Catepsina L/biosíntesis , Catepsina L/genética , Chlorocebus aethiops , Humanos , Proteínas de Neoplasias/genética , Sistema Renina-Angiotensina , SARS-CoV-2/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Células VeroRESUMEN
The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, allowing tight control over potent host responses by both the host and the invading virus. Here, we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.
Asunto(s)
Citocinas/genética , Procesamiento Postranscripcional del ARN , Ribosomas/metabolismo , Ribosomas/virología , SARS-CoV-2/inmunología , Factores de Transcripción/genética , Animales , Antivirales/antagonistas & inhibidores , Línea Celular Tumoral , Chlorocebus aethiops , Biología Computacional , Citocinas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata/genética , Pulmón/inmunología , Pulmón/virología , ARN Mensajero/metabolismo , RNA-Seq , Ribosomas/genética , SARS-CoV-2/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Células VeroRESUMEN
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host-pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host-pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host-pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
RESUMEN
Regulation of type-I interferon (IFN) production is essential to the balance between antimicrobial defence and autoimmune disorders. The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains, previously C6orf106) was recently characterised as an inhibitor of antiviral and proinflammatory cytokine (interferon-alpha/beta and tumor necrosis factor alpha) transcription. Currently there is a paucity of information about the molecular characteristics of ILRUN, despite it being associated with several diseases including virus infection, coronary artery disease, obesity and cancer. Here, we characterise ILRUN as a highly phylogenetically conserved protein containing UBA-like and a NBR1-like domains that are both essential for inhibition of type-I interferon and tumor necrosis factor alpha) transcription in human cells. We also solved the crystal structure of the NBR1-like domain, providing insights into its potential role in ILRUN function. This study provides critical information for future investigations into the role of ILRUN in health and disease.