Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
FEBS J ; 288(8): 2645-2659, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33599081

RESUMEN

The two branches of the autonomic nervous system (ANS), adrenergic and cholinergic, exert a multitude of effects on the human myocardium thanks to the activation of distinct G protein-coupled receptors (GPCRs) expressed on the plasma membranes of cardiac myocytes, cardiac fibroblasts, and coronary vascular endothelial cells. Norepinephrine (NE)/epinephrine (Epi) and acetylcholine (ACh) are released from cardiac ANS terminals and mediate the biological actions of the ANS on the heart via stimulation of cardiac adrenergic or muscarinic receptors, respectively. In addition, several other neurotransmitters/hormones act as facilitators of ANS neurotransmission in the heart, taking part in the so-called nonadrenergic noncholinergic (NANC) part of the ANS's control of cardiac function. These NANC mediators also use several different cell membrane-residing GPCRs to exert their effects in the myocardium. Cardiac ANS dysfunction and an imbalance between the activities of its two branches underlie a variety of cardiovascular diseases, from heart failure and hypertension to coronary artery disease, myocardial ischemia, and arrhythmias. In this review, we present the main well-established signaling modalities used by cardiac autonomic GPCRs, including receptors for salient NANC mediators, and we also highlight the latest developments pertaining to cardiac cell type-specific signal transduction, resulting in cell type-specific cardiac effects of each of these autonomic receptors.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Insuficiencia Cardíaca/genética , Receptores Acoplados a Proteínas G/genética , Transmisión Sináptica/genética , Acetilcolina/metabolismo , Sistema Nervioso Autónomo/fisiología , Células Endoteliales/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética
3.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326036

RESUMEN

Aldosterone (Aldo), when overproduced, is a cardiotoxic hormone underlying heart failure and hypertension. Aldo exerts damaging effects via the mineralocorticoid receptor (MR) but also activates the antiapoptotic G protein-coupled estrogen receptor (GPER) in the heart. G protein-coupled receptor (GPCR)-kinase (GRK)-2 and -5 are the most abundant cardiac GRKs and phosphorylate GPCRs as well as non-GPCR substrates. Herein, we investigated whether they phosphorylate and regulate cardiac MR and GPER. To this end, we used the cardiomyocyte cell line H9c2 and adult rat ventricular myocytes (ARVMs), in which we manipulated GRK5 protein levels via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and GRK2 activity via pharmacological inhibition. We report that GRK5 phosphorylates and inhibits the cardiac MR whereas GRK2 phosphorylates and desensitizes GPER. In H9c2 cardiomyocytes, GRK5 interacts with and phosphorylates the MR upon ß2-adrenergic receptor (AR) activation. In contrast, GRK2 opposes agonist-activated GPER signaling. Importantly, GRK5-dependent MR phosphorylation of the MR inhibits transcriptional activity, since aldosterone-induced gene transcription is markedly suppressed in GRK5-overexpressing cardiomyocytes. Conversely, GRK5 gene deletion augments cardiac MR transcriptional activity. ß2AR-stimulated GRK5 phosphorylates and inhibits the MR also in ARVMs. Additionally, GRK5 is necessary for the protective effects of the MR antagonist drug eplerenone against Aldo-induced apoptosis and oxidative stress in ARVMs. In conclusion, GRK5 blocks the cardiotoxic MR-dependent effects of Aldo in the heart, whereas GRK2 may hinder beneficial effects of Aldo through GPER. Thus, cardiac GRK5 stimulation (e.g., via ß2AR activation) might be of therapeutic value for heart disease treatment via boosting the efficacy of MR antagonists against Aldo-mediated cardiac injury.


Asunto(s)
Aldosterona/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal , Animales , Apoptosis , Línea Celular , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Modelos Biológicos , Estrés Oxidativo , Fosforilación , Unión Proteica , Ratas , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Transcripcional
5.
Hypertension ; 70(5): 972-981, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28874462

RESUMEN

Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins ßarr (ß-arrestin)-1 and ßarr-2 are functionally distinct in the heart. ßarr1 is cardiotoxic, decreasing contractility by opposing ß1AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, ßarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether ßarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that ßarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca2+-ATPase) in vivo and in vitro in a ß1AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. ßarr1 lacks this effect. Moreover, ßarr2 does not desensitize ß1AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to ßarr1. In vivo, post-MI heart failure mice overexpressing cardiac ßarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, ßarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac ßAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac ßarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac ßarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure.


Asunto(s)
Cardiotónicos , Insuficiencia Cardíaca , Contracción Miocárdica , Infarto del Miocardio , Miocitos Cardíacos , Remodelación Ventricular , Arrestina beta 2 , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Humanos , Ratones , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Volumen Sistólico , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología , Arrestina beta 2/metabolismo , Arrestina beta 2/farmacología
6.
Pharmacogenomics ; 17(15): 1611-1620, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27643874

RESUMEN

AIM: The ß1-adrenergic receptor (AR) Arg389Gly polymorphism affects efficacy of its procontractile signaling in cardiomyocytes and carriers' responses to ß-blockers. To identify molecular mechanisms underlying functional differences between Arg389 and Gly389 ß1ARs, we examined their binding to ß-arrestins (ßarr-1 and -2), which mediate ß1AR signaling, in neonatal rat ventricular myocytes. METHODS: We tested the ß1AR-ßarr interaction via ß1AR immunoprecipitation followed by ßarr immunoblotting. RESULTS: ßarr1 binds both variants upon isoproterenol, carvedilol or metoprolol treatment in neonatal rat ventricular myocytes. Conversely, the potentially beneficial in the heart ßarr2 only interacts with the Arg389 receptor in response to isoproterenol or carvedilol. CONCLUSION: Arg389 confers unique ßarr2-interacting tropism to the ß1AR in cardiac myocytes, potentially underlying this variant's gain-of-function phenotype and better clinical responses to ß-blockers.


Asunto(s)
Miocitos Cardíacos/metabolismo , Polimorfismo Genético , Receptores Adrenérgicos beta 1/genética , beta-Arrestinas/metabolismo , Animales , Carbazoles/metabolismo , Carvedilol , Células Cultivadas , Isoproterenol/farmacología , Propanolaminas/metabolismo , Unión Proteica , Ratas , Ratas Wistar , Tropismo
7.
Mol Endocrinol ; 30(3): 372-81, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26849467

RESUMEN

Elevated sympathetic nervous system (SNS) activity aggravates several diseases, including heart failure. The molecular cause(s) underlying this SNS hyperactivity are not known. We have previously uncovered a neurohormonal mechanism, operating in adrenomedullary chromaffin cells, by which circulating catecholamine (CA) levels increase in heart failure: severe dysfunction of the adrenal α2-adrenergic receptors (ARs) due to the up-regulation of G protein-coupled receptor-kinase (GRK)-2, the kinase that desensitizes them. Herein we looked at the potential signaling mechanisms that bring about this GRK2 elevation in chromaffin cells. We found that chronic CA treatment of either PC12 or rat primary chromaffin cells can in itself result in GRK2 transcriptional up-regulation through α2ARs-Gi/o proteins-Src-ERK1/2. The resultant GRK2 increase severely enhances the α2AR desensitization/down-regulation elevating not only CA release but also CA biosynthesis, as evidenced by tyrosine hydroxylase up-regulation. Finally, GRK2 knockdown leads to enhanced apoptosis of PC12 cells, indicating an essential role for GRK2 in chromaffin cell homeostasis/survival. In conclusion, chromaffin cell GRK2 mediates a positive feedback loop that feeds into CA secretion, thereby enabling the adrenomedullary component of the SNS to turn itself on.


Asunto(s)
Catecolaminas/biosíntesis , Células Cromafines/metabolismo , Retroalimentación Fisiológica , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Regulación hacia Arriba , Animales , Catecolaminas/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cromafines/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Masculino , Modelos Biológicos , Norepinefrina/farmacología , Células PC12 , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/metabolismo
8.
Int J Biochem Cell Biol ; 77(Pt B): 213-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26851510

RESUMEN

The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as "presynaptic autoreceptors" in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and ß-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and ß-arrestins in these processes and particular points of focus for future research will be highlighted, as well.


Asunto(s)
Glándulas Suprarrenales/citología , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cromafines/citología , Humanos , Transducción de Señal
9.
Curr Drug Metab ; 17(1): 30-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26537419

RESUMEN

Carvedilol and metoprolol are two of the most commonly prescribed ß-blockers in cardiovascular medicine and primarily used in the treatment of hypertension and heart failure. Cytochrome P450 2D6 (CYP2D6) is the predominant metabolizing enzyme of these two drugs. Since the first description of a CYP2D6 sparteinedebrisoquine polymorphism in the mid-seventies, substantial genetic heterogeneity has been reported in the human CYP2D6 gene, with ~100 different polymorphisms identified to date. Some of these polymorphisms render the enzyme completely inactive while others do not modify its activity. Based on all the identified variants, four metabolizer phenotypes are nowadays used to characterize drug metabolism via CYP2D6 in humans: ultra-rapid metabolizer (UM); extensive metabolizer (EM); intermediate metabolizer (IM); and poor metabolizer (PM) phenotypes. As a consequence of these CYP2D6 metabolizer phenotypes, pharmacokinetics and bioavailability of carvedilol and metoprolol can range from therapeutically ineffective levels (in the UM patients) to excessive (overdose) and potentially toxic concentrations (in PM patients). This, in turn, can result in elevated risks for either treatment failure (in terms of blood pressure reduction of hypertensive patients and of improving survival and cardiovascular function of heart failure patients) or for adverse effects (e.g. hypotension and bradycardia). The present review will discuss the impact of these CYP2D6 genetic polymorphisms on the therapeutic responses of cardiovascular patients treated with either of these two ß-blockers. In addition, the potential advantages and disadvantages of implementing CYP2D6 genetic testing in the clinic to guide/personalize therapy with these two drugs will be discussed.


Asunto(s)
Carbazoles/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Citocromo P-450 CYP2D6/genética , Variación Genética/genética , Metoprolol/uso terapéutico , Propanolaminas/uso terapéutico , Antagonistas Adrenérgicos alfa/uso terapéutico , Animales , Carvedilol , Humanos , Farmacogenética/métodos , Resultado del Tratamiento
10.
World J Cardiol ; 7(9): 539-43, 2015 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-26413230

RESUMEN

Heart failure (HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic (adrenergic) nervous system (SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases (GRKs), followed by ßarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell (receptor sequestration). Recent evidence indicates that adrenal GRK2 and ßarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and ßarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA