Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 363: 142825, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996982

RESUMEN

Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous •OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous •OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.

2.
Water Res ; 261: 122034, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38996729

RESUMEN

Urine has an intricate composition with high concentrations of organic compounds like urea, creatinine, and uric acid. Urine poses a formidable challenge for advanced effluent treatment processes following urine diversion strategies. Urine matrix complexity is heightened when dealing with pharmaceutical residues like acetaminophen (ACT) and metabolized pharmaceuticals. This work explores ACT degradation in synthetic, fresh real, and hydrolyzed real urines using electrochemical oxidation with a dimensional stable anode (DSA). Analyzing drug concentration (2.5 - 40 mg L-1) over 180 min at various current densities in fresh synthetic effluent revealed a noteworthy 75% removal at 48 mA cm-2. ACT degradation kinetics and that of the other organic components followed a pseudo-first-order reaction. Uric acid degradation competed with ACT degradation, whereas urea and creatinine possessed higher oxidation resistance. Fresh real urine presented the most challenging scenario for the electrochemical process. Whereas, hydrolyzed real urine achieved higher ACT removal than fresh synthetic urine. Carboxylic acids like acetic, tartaric, maleic, and oxalic were detected as main by-products. Inorganic ionic species nitrate, nitrite, and ammonium ions were released to the medium from N-containing organic compounds. These findings underscore the importance of considering urine composition complexities and provide significant advancements in strategies for efficiently addressing trace pharmaceutical contamination.

3.
Chemosphere ; 355: 141766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527631

RESUMEN

Azo dyes are largely used in many industries and discharged in large volumes of their effluents into the aquatic environment giving rise to non-esthetic pollution and health-risk problems. Due to the high stability of azo dyes in ambient conditions, they cannot be abated in conventional wastewater treatment plants. Over the last fifteen years, the decontamination of dyeing effluents by persulfate (PS)-based advanced oxidation processes (AOPs) has received a great attention. In these methods, PS is activated to be decomposed into sulfate radical anion (SO4•-), which is further partially hydrolyzed to hydroxyl radical (•OH). Superoxide ion (O2•-) and singlet oxygen (1O2) can also be produced as oxidants. This review summarizes the results reported for the discoloration and mineralization of synthetic and real waters contaminated with azo dyes covering up to November 2023. PS activation with iron, non-iron transition metals, and carbonaceous materials catalysts, heat, UVC light, photocatalysis, photodegradation with iron, electrochemical and related processes, microwaves, ozonation, ultrasounds, and other processes is detailed and analyzed. The principles and characteristics of each method are explained with special attention to the operating variables, the different oxidizing species generated yielding radical and non-radical mechanisms, the addition of inorganic anions and natural organic matter, the aqueous matrix, and the by-products identified. Finally, the overall loss of toxicity or partial detoxification of treated azo dye solutions during the PS-based AOPs is discussed.


Asunto(s)
Compuestos Azo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Hierro , Oxidación-Reducción , Oxidantes , Agua
4.
Chemosphere ; 352: 141396, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346519

RESUMEN

The wide use of the fluoroquinolone antibiotic ciprofloxacin (CIP), combined with its limited removal in wastewater treatment plants, results in a dangerous accumulation in natural water. Here, the complete degradation of CIP by photoelectrocatalysis (PEC), using an FTO/ZnO/TiO2/Ag2Se photoanode that is responsive to blue light, has been investigated. A slow antibiotic concentration decay was found in 0.050 M Na2SO4 under the oxidizing action of holes and OH photogenerated at the anode surface. The degradation was strongly enhanced in 0.070 M NaCl due to mediated oxidation by electrogenerated active chlorine. The latter process became faster at pH 7.0, with total abatement of CIP at concentrations below 2.5 mg L-1 operating at a bias potential of +0.8 V. The performance was enhanced when increasing the anodic potential and decreasing the initial drug content. The use of solar radiation from a simulator was also beneficial, owing to the greater lamp power. In contrast, the electrochemical oxidation in the dark yielded a poor removal, thus confirming the critical role of oxidants formed under light irradiation. The generation of holes and OH was confirmed from tests with specific scavengers like ammonium oxalate and tert-butanol, respectively. The prolonged usage of the photoanode affected its performance due to poisoning of its active centers by degradation by-products, although a good PEC reproducibility was obtained upon surface cleaning.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Ciprofloxacina/química , Antibacterianos/química , Agua , Reproducibilidad de los Resultados , Luz , Contaminantes Químicos del Agua/análisis , Electrodos , Oxidación-Reducción
5.
Environ Pollut ; 345: 123397, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38272166

RESUMEN

The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , América Latina , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis
6.
Chemosphere ; 351: 141153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219991

RESUMEN

The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.


Asunto(s)
Antibacterianos , Peróxidos , Humanos , Antibacterianos/farmacología , Oxidación-Reducción , Oxidantes , Agua
7.
Sci Total Environ ; 912: 169143, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38070549

RESUMEN

The decolorization and TOC removal of solutions of Acid Brown 14 (AB14) diazo dye containing 50 mg L-1 of total organic carbon (TOC) have been first studied in a continuous-flow electrocoagulation (EC) reactor of 3 L capacity with Fe electrodes of ∼110 cm2 area each. Total loss of color with poor TOC removal was found in chloride, sulfate, and/or hydrogen carbonate matrices after 18 min of this treatment. The best performance was found using 5 anodes and 4 cathodes of Fe at 13.70 A and low liquid flow rate of 10 L h-1, in aerated 39.6 mM NaCl medium within a pH range of 4.0-10.0. The effluent obtained from EC was further treated by electro-Fenton (EF) using a 2.5 L pre-pilot flow plant, which was equipped with a filter-press cell comprising a Pt anode and an air-diffusion cathode for H2O2 electrogeneration. Operating with 0.10-1.0 mM Fe2+ as catalyst at pH 3.0 and 50 mA cm-2, a similar TOC removal of 68 % was found as maximal in chloride and sulfate media using the sequential EC-EF process. The EC-treated solutions were also treated by photoelectro-Fenton (PEF) employing a photoreactor with a 125 W UVA lamp. The sequential EC-PEF process yielded a much higher TOC reduction, close to 90 % and 97 % in chloride and sulfate media, respectively, due to the rapid photolysis of the final Fe(III)-carboxylate complexes. The formation of recalcitrant chloroderivatives from generated active chlorine limited the mineralization in the chloride matrix. For practical applications of this two-step technology, the high energy consumption of the UVA lamp in PEF could be reduced by using free sunlight.

8.
Chemosphere ; 344: 140407, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838029

RESUMEN

Ciprofloxacin (CIP) is a commonly prescribed fluoroquinolone antibiotic that, even after uptake, remains unmetabolized to a significant extent-over 70%. Unmetabolized CIP is excreted through both urine and feces. This persistent compound manages to evade removal in municipal wastewater facilities, leading to its substantial accumulation in aquatic environments. This accumulation raises concerns about potential risks to the health of various living organisms. Herein, we present a study on the remediation of CIP in synthetic urine by electrochemical oxidation in an undivided cell with a DSA (Ti/IrO2) anode and a stainless-steel cathode. Physisorbed hydroxyl radical formed at the anode surface from water discharge and free chlorine generated from Cl- oxidation were the main oxidizing agents. The effect of pH and current density (j) on CIP degradation was examined, and its total removal was easily achieved at pH ≥ 7.0 and j ≥ 60 mA cm-2 due to the action of free chlorine. The CIP decay always followed a pseudo-first-order kinetics. The components of the synthetic urine were also oxidized. The main nitrogenated species released was NH3. A very small concentration of free chlorine was quantified at the end of the treatment, thus demonstrating the good performance of electrochemical oxidation and its effectiveness to destroy all the organic pollutants. The present study demonstrates the simultaneous oxidation of the organic components of urine during CIP degradation, thus showing a unique perspective for its electrochemical oxidation that enhances the environmental remediation strategies.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Antibacterianos/química , Ciprofloxacina/química , Cloro , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 339: 139666, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37532204

RESUMEN

Today, water shortage problems around the world have forced the search for new treatment alternatives, in this context, electrochemical oxidation technology is a hopeful process for wastewater treatment, although it is still needed exploration of new efficient and economically viable electrode materials. In this way, mixed metal oxide anodes look like promising alternatives but their preparation is still a significant point to study, searching for finding low-cost materials to improve electrocatalytic efficiencies. In an exploration of this kind of highly efficient materials, this work presents the results obtained using an MMO Ti/IrO2-SnO2-Sb2O5 anode. All the prepared anodes exhibited excellent physical and electrochemical properties. The electrochemical oxidation of 100 mL and 200 mg L-1 Reactive Orange 84 (RO 84) diazo dye was studied using 3 cm2 of such synthesized anodes by applying current densities of 25, 50, and 100 mA cm-2. Faster and more efficient electrochemical oxidation occurred at 100 mA cm-2 with 50 mM of Na2SO4 + 10 mM NaCl as supporting electrolyte at pH 3.0. The degradation and mineralization processes of the above solution were enhanced with the electro-Fenton process with 0.05 mM Fe2+ and upgraded using photoelectron-Fenton with UVA light. This process yielded 91% COD decay with a low energy consumption of 0.1137 kWh (g COD)-1 at 60 min. The evolution of a final carboxylic acid like oxalic was followed by HPLC analysis. The Ti/IrO2-SnO2-Sb2O5 is then an efficient and low-cost anode for the photoelectro-Fenton treatment of RO 84 in a chloride and sulfate media.


Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Titanio/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/química , Técnicas Electroquímicas
10.
Chemosphere ; 327: 138532, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37003440

RESUMEN

Recalcitrant and toxic organic pollutants from wastewaters are scarcely removed in conventional wastewater treatment plants. To preserve the water quality, organics need to be removed by developing powerful oxidation technologies. Our laboratory proposed in 2007 a potent electrochemical advanced oxidation process (EAOP) for wastewater remediation, so-called solar photoelectro-Fenton (SPEF). This review summarizes the advances of this emerging technology up to 2022, making evident its effectiveness and cost-efficiency for the destruction of usual organic pollutants. The simultaneous action of generated hydroxyl radicals and the photolysis by sunlight explains the high oxidation power of SPEF respect to other EAOPs. The review is initiated by describing the fundamentals of the process to remark the role of the produced oxidants and the benefits of using solar irradiation in its performance. The photoelectrochemical systems used (bench tank reactor and solar pre-pilot flow plant) and the assessment of the operating variables are discussed. The characteristics of the most common homogeneous SPEF for the degradation and mineralization of several synthetic solutions of industrial chemicals, herbicides, pharmaceuticals, and synthetic organic dyes, as well as of some real wastewaters, are further described. The influence of the photoelectrochemical cell, electrodes, solution pH, electrolyte composition, Fe2+ and pollutant concentration, and current density is analyzed. The performance of a homogeneous SPEF-like process with active chlorine and heterogeneous SPEF processes with solid catalysts such as Fe3O4 and sodium vermiculite is also discussed. Finally, the advances of homogeneous SPEF combined with other techniques like solar photocatalysis, solar photoelectrocatalysis, anaerobic digestion, and nanofiltration are reported.


Asunto(s)
Contaminantes Ambientales , Herbicidas , Contaminantes Químicos del Agua , Aguas Residuales , Luz Solar , Técnicas Electroquímicas , Herbicidas/química , Oxidación-Reducción , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Electrodos
11.
Chem Rev ; 123(8): 4635-4662, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36917618

RESUMEN

This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.

12.
Chemosphere ; 313: 137411, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36460148

RESUMEN

Paracetamol (PCT) or acetaminophen is a widely prescribed drug to treat fever and mild to moderate pain. The PCT uptake by animals and humans is not complete, being excreted through their urine to contaminate the aquatic/natural environments. Trace amounts of this drug have been found in sewage sludge, hospital wastewaters, wastewater plant treatments, surface waters, and even drinking water. PCT denatures proteins and oxidize lipids in cells with damage of their genetic code. Its toxicity over macrophytes, protozoan, algae, bacteria, and fishes has been reported. Ozonation methods have been proposed as efficient treatments to solve this pollution. This comprehensive and critical review is focused on the application of ozonation processes to remove PCT polluted water from different sources, like natural waters, synthetic waters, and real wastewaters. The fundamentals, operating variables, and best results by direct ozonation and hybrid catalytic ozonation are described, with attention to produced reactive oxygen species and their oxidative action. Single ozonation, catalytic modification of materials, and hybrid non-catalytic processes are detailed as direct ozonation methods. Ozonation with metal-based catalysts and photolytic and photocatalytic ozonation as hybrid catalytic methods are analyzed. Sequential non-biological and biological treatments with ozone and ozonation for wastewater remediation in treatment plants are described. Reaction sequences proposed for PCT mineralization are finally discussed, showing the initial formation of hydroquinone and 2-hydroxy-4-(N-acetyl)-aminophenol and their consecutive evolution to ultimate carboxylic acids like oxalic and oxamic. The ability of the methods to destroy these acids and their iron- and/or copper-complexes explains their mineralization performance.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Animales , Aguas Residuales , Acetaminofén , Contaminantes Químicos del Agua/análisis , Aguas del Alcantarillado , Purificación del Agua/métodos , Catálisis
14.
Chemosphere ; 303(Pt 1): 134883, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35577132

RESUMEN

Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Acetaminofén , Animales , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Aguas Residuales , Agua , Purificación del Agua/métodos
15.
Sci Total Environ ; 819: 153102, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041950

RESUMEN

Antibiotics are widely supplied over all the world to animals and humans to fight and heal bacteriological diseases. The uptake of antibiotics has largely increased the average-life expectancy of living beings. However, these recalcitrant products have been detected at low concentrations in natural waters, with potential health risks due to alterations in food chains and an increase in the resistance to bacterial infection, control of infectious diseases, and damage of the beneficial bacteria. The high stability of antibiotics at mild conditions prevents their effective removal in conventional wastewater treatment plants. A powerful advanced oxidation processes such as the electro-Fenton (EF) process is being developed as a guarantee for their destruction by •OH generated as strong oxidant. This review presents a critical, exhaustive, and detailed analysis on the application of EF to remediate synthetic and real wastewaters contaminated with common antibiotics, covering the period 2017-2021. Homogeneous EF and heterogeneous EF involving iron solid catalysts or iron functionalized cathodes, as well as their hybrid and sequential treatments, are exhaustively examined. Their fundamentals and characteristics are detailed, and the main results obtained for the removal of the most used antibiotic families are carefully described and discussed. The role of generated oxidizing agents is explained, and the by-products generated, and reaction sequences proposed are detailed.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Electrodos , Peróxido de Hidrógeno/análisis , Oxidación-Reducción , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
16.
Chemosphere ; 286(Pt 3): 131849, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426267

RESUMEN

Ibuprofen (IBP) is one ubiquitous drug prescribed as anti-inflammatory, analgesic, and antipyretic. It has been detected in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water due to its continuous release to the environment, mainly from the excretion in the urine of animals and humans. IBP is a carcinogenic and non-steroidal endocrine disrupting drug with harmful effects over fungal, bacterial, algae, microorganisms, crustacean, and fish species, and can be potentially hazard for human health. Since conventional treatments remove inefficiently this drug, many advanced oxidation processes (AOPs) have been developed aiming their abatement from waters to avoid their harmful health problems. This paper presents an exhaustive and critical review on the application of AOPs to treat synthetic waters, natural waters, and real wastewaters polluted with IBP alone or mixed with other common drugs covering up to 2020. The characteristics and main results obtained for single, hybrid, and sequential treatments are described. Dielectric barrier or pulsed-corona discharges are detailed among the single processes. Hybrid processes such as photocatalysis (UV/H2O2, UV/chlorine, TiO2/UV), hybrid ozonation (O3/H2O2, electro-peroxone, catalytic ozonation), Fenton-based processes (photo-Fenton, electro-Fenton, photoelectro-Fenton), zero-valent iron, ultrasonic, peroxymonosulfate, and persulfate, are discussed. The effect of the kind of irradiation (UV, visible, solar) on photo-assisted processes is analyzed. Sequential processes with biological pre- or post-treatments using or not membranes for natural water and real wastewater remediation are described. Finally, 38 by-products detected during IBP removal by AOPs are reported, allowing envisaging three parallel pathways for its initial degradation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Peróxido de Hidrógeno , Ibuprofeno , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 423(Pt A): 127005, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34479080

RESUMEN

The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of ß-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Acebutolol , Cloruros , Electrodos , Hierro , Oxidación-Reducción , Sefarosa , Contaminantes Químicos del Agua/análisis
18.
Chemosphere ; 263: 128271, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297215

RESUMEN

Model solutions of bisphenol A (BPA) in 0.050 M Na2SO4 at pH 3.0 have been treated by the electro/Fe2+/persulfate process. The activation of 5.0 mM persulfate with 0.20 mM Fe2+ yielded a mixture of sulfate radical anion (SO4-) and OH, although quenching tests revealed the prevalence of the former species as the main oxidizing agent. In trials run in an IrO2/carbon-felt cell, 98.4% degradation was achieved alongside 61.8% mineralization. The energy consumption was 253.9 kWh (kg TOC)-1, becoming more cost-effective as compared to cells with boron-doped diamond and Pt anodes. Carbon felt outperformed stainless steel as cathode because of the faster Fe2+ regeneration. All BPA concentration decays agreed with a pseudo-fist-order kinetics. The effect of persulfate, Fe2+ and BPA concentrations as well as of the applied current on the degradation process was assessed. Two dehydroxylated and three hydroxylated monobenzenic by-products appeared upon SO4- and OH attack, respectively. The analogous treatment of BPA spiked into urban wastewater yielded a faster degradation and mineralization due to the co-generation of HClO and the larger OH production as SO4- reacted with Cl-.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Compuestos de Bencidrilo , Electrodos , Cinética , Oxidación-Reducción , Fenoles , Sulfatos
19.
Environ Sci Pollut Res Int ; 28(19): 23833-23848, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33175352

RESUMEN

One of the main challenges of electrochemical Fenton-based processes is the treatment of organic pollutants at near-neutral pH. As a potential approach to this problem, this work addresses the use of a low content of soluble chelated metal catalyst, formed between Fe(III) and ethylenediamine-N,N'-disuccinic (EDDS) acid (1:1), to degrade the herbicide triclopyr in 0.050 M Na2SO4 solutions at pH 7.0 by photoelectro-Fenton with UVA light or sunlight (PEF and SPEF, respectively). Comparison with electro-Fenton treatments revealed the crucial role of the photo-Fenton-like reaction, since this promoted the production of soluble Fe(II) that enhanced the pesticide removal. Hydroxyl radicals formed at the anode surface and in the bulk were the main oxidants. A boron-doped diamond (BDD) anode yielded a greater mineralization than an IrO2-based one, at the expense of reduced cost-effectiveness. The effect of catalyst concentration and current density on the performance of PEF with BDD was examined. The PEF trials in 0.25 mM Na2SO4 + 0.35 mM NaCl medium showed a large influence of generated active chlorine as oxidant, being IrO2 more suitable than RuO2 and BDD. In SPEF with BDD, the higher light intensity from solar photons accelerated the removal of the catalyst and triclopyr, with small effect on mineralization. A plausible route for the herbicide degradation by Fe(III)-EDDS-catalyzed PEF and SPEF is finally proposed based on detected byproducts: three heteroaromatic and four linear N-aliphatic compounds, formamide, and tartronic and oxamic acids.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Electrodos , Compuestos Férricos , Glicolatos , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Luz Solar , Rayos Ultravioleta
20.
Sci Total Environ ; 747: 141541, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795810

RESUMEN

The development of new or upgraded electrochemical water treatment technologies is considered a topic of great interest. Here, Tartrazine azo dye solutions were treated by means of a quite innovative dual electrochemical persulfate (S2O82-, PS) activation that combines H2O2 generation at an air-diffusion cathode and anodic oxidation (AO) at a boron-doped diamond (BDD) anode using a stirred tank reactor. This so-called AO-H2O2/PS process was compared to AO with stainless steel cathode, both in 50 mM Na2SO4 medium, finding the oxidation power increasing as: AO < AO-H2O2 < AO/PS < AO-H2O2/PS. In the latter, the dye and its products were mainly destroyed by: (i) hydroxyl radicals, formed either from water oxidation at BDD surface or via reaction between H2O2 and S2O82-, and (ii) sulfate radical anion, formed from the latter reaction, thermal PS activation and cathodic S2O82- reduction. Hydroxyl radicals prevailed as oxidizing agents, as deduced from trials with tert-butanol and methanol. The reaction between S2O82- and accumulated H2O2 was favored as temperature increased from 25 to 45 °C. The effect of PS content up to 36 mM, dye concentration within the range 0.22-0.88 mM, current density (j) between 8.3 and 33.3 mA cm-2 and pH between 3.0 and 9.0 on the process performance was examined. All decolorization profiles agreed with a pseudo-first-order kinetics. The best results for treating 0.44 mM dye were attained with 36 mM PS at pH 3.0, j = 16.7 mA cm-2 and 45 °C, yielding total loss of color, 62% TOC removal and 50% mineralization current efficiency after 360 min. The slow mineralization was attributed to the persistence of recalcitrant byproducts like maleic, acetic, oxalic, formic and oxamic acids. It is concluded that the novel AO-H2O2/PS process is more effective than AO/PS to treat Tartrazine solutions, being advisable to extend the study to other organic pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...