Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 30(4): 2267-2280, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31701138

RESUMEN

Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.


Asunto(s)
Atención/fisiología , Lóbulo Frontal/metabolismo , Red Nerviosa/metabolismo , Lóbulo Parietal/metabolismo , Estimulación Luminosa/métodos , Adulto , Lóbulo Frontal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Factores de Tiempo
2.
J Neurophysiol ; 122(4): 1810-1820, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433718

RESUMEN

Haptic illusions serve as important tools for studying neurocognitive processing of touch and can be utilized in practical contexts. We report a new spatiotemporal haptic illusion that involves mislocalization when the order of vibrotactile intensity is manipulated. We tested two types of motors mounted in a 4 × 4 array in the lower thoracic region. We created apparent movement with two successive vibrotactile stimulations of varying distance (40, 20, or 0 mm) and direction (up, down, or same) while changing the temporal order of stimulation intensity (strong-weak vs. weak-strong). Participants judged the perceived direction of movement in a 2-alternative forced-choice task. The results suggest that varying the temporal order of vibrotactile stimuli with different intensity leads to systematic localization errors: when a strong-intensity stimulus was followed by a weak-intensity stimulus, the probability that participants perceived a downward movement increased, and vice versa. The illusion is so strong that the order of the strength of stimulation determined perception even when the actual presentation movement was the opposite. We then verified this "intensity order illusion" using an open response format where observers judged the orientation of an imaginary line drawn between two sequential tactor activations. The intensity order illusion reveals a strong bias in vibrotactile perception that has strong implications for the design of haptic information systems.NEW & NOTEWORTHY We report a new illusion involving mislocalization of stimulation when the order of vibrotactile intensity is manipulated. When a strong-intensity stimulus follows a weak-intensity stimulus, the probability that participants perceive an upward movement increases, and vice versa. The illusion is so strong that the order of the strength of stimulation determined perception even when the actual presentation movement was the opposite. This illusion is important for the design of vibrotactile stimulation displays.


Asunto(s)
Ilusiones/fisiología , Percepción del Tacto , Adulto , Femenino , Humanos , Masculino , Movimiento , Tiempo , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...