Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Respir Res ; 24(1): 189, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468919

RESUMEN

INTRODUCTION: Accumulating clinical evidence links Obstructive Sleep Apnea (OSA) with worse outcomes of asthma, but impact on airway function remains sparsely studied. We tested effects of Chronic Intermittent Hypoxia (CIH) - a hallmark of OSA - on airway hyperresponsiveness (AHR), in a rat model of chronic allergen-induced inflammation. METHODS: Brown Norway rats were exposed to six weeks of CIH or normoxia (NORM) concurrent with weekly house dust mites (HDM) or saline (SAL) challenges. At endpoint, we assessed responses to seven Methacholine (Mch) doses (0, 4, 8, 16, 32, 64, 128 mg/mL) on a FlexiVent system (Scireq). Maximal (or plateau) responses (reactivity) for total respiratory system Resistance (Rrs) and Elastance (Ers), Newtonian airway resistance (RN, a measure of central airways function) and tissue damping (G, a measure of distal airways function) were plotted. RESULTS: HDM/CIH-treated animals demonstrated the highest reactivity to Mch in Rrs and Ers compared to all other groups (HDM/NORM, SAL/CIH and SAL/NORM p < 0.05 for all comparisons, for doses 5-7 for Rrs, and for doses 4-7 for Ers). The enhanced Rrs response was due to an increase in G (doses 4-7, p < 0.05 for comparisons to all other groups), whereas RN was not affected by CIH. CONCLUSIONS: In rats chronically challenged with HDM, concurrent CIH exposure induces AHR primarily in the distal airways, which affects the respiratory system frequency-dependent elastic properties.


Asunto(s)
Hipersensibilidad Respiratoria , Apnea Obstructiva del Sueño , Ratas , Animales , Pyroglyphidae , Alérgenos , Hipersensibilidad Respiratoria/inducido químicamente , Pulmón , Hipoxia , Cloruro de Metacolina/farmacología , Inflamación , Modelos Animales de Enfermedad
2.
Cell Metab ; 33(5): 905-922.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33887198

RESUMEN

Low-protein diets promote metabolic health in rodents and humans, and the benefits of low-protein diets are recapitulated by specifically reducing dietary levels of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we demonstrate that each BCAA has distinct metabolic effects. A low isoleucine diet reprograms liver and adipose metabolism, increasing hepatic insulin sensitivity and ketogenesis and increasing energy expenditure, activating the FGF21-UCP1 axis. Reducing valine induces similar but more modest metabolic effects, whereas these effects are absent with low leucine. Reducing isoleucine or valine rapidly restores metabolic health to diet-induced obese mice. Finally, we demonstrate that variation in dietary isoleucine levels helps explain body mass index differences in humans. Our results reveal isoleucine as a key regulator of metabolic health and the adverse metabolic response to dietary BCAAs and suggest reducing dietary isoleucine as a new approach to treating and preventing obesity and diabetes.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Dieta , Isoleucina/metabolismo , Valina/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Índice de Masa Corporal , Dieta/veterinaria , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Semin Cancer Biol ; 68: 230-241, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113999

RESUMEN

For decades genotoxic therapy has been a mainstay in the treatment of cancer, based on the understanding that the deregulated growth and genomic instability that drive malignancy also confer a shared vulnerability. Although chemotherapy and radiation can be curative, only a fraction of patients benefit, while nearly all are subjected to the harmful side-effects. Drug repurposing, defined here as retooling existing drugs and compounds as chemo or radiosensitizers, offers an attractive route to identifying otherwise non-toxic agents that can potentiate the benefits of genotoxic cancer therapy to enhance the therapeutic ratio. This review seeks to highlight recent progress in defining cellular mechanisms of the DNA damage response including damage sensing, chromatin modification, DNA repair, checkpoint signaling, and downstream survival and death pathways, as a framework to determine which drugs and natural products may offer the most potential for repurposing as chemo- and/or radiosensitizers. We point to classical examples and recent progress that have identified drugs that disrupt cellular responses to DNA damage and may offer the greatest clinical potential. The most important next steps may be to initiate prospective clinical trials toward translating these laboratory discoveries to benefit patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Daño del ADN , Reparación del ADN , Humanos
4.
Elife ; 92020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32720643

RESUMEN

Inhibition of mTOR (mechanistic Target Of Rapamycin) signaling by rapamycin promotes healthspan and longevity more strongly in females than males, perhaps because inhibition of hepatic mTORC2 (mTOR Complex 2) specifically reduces the lifespan of males. Here, we demonstrate using gonadectomy that the sex-specific impact of reduced hepatic mTORC2 is not reversed by depletion of sex hormones. Intriguingly, we find that ovariectomy uncouples lifespan from metabolic health, with ovariectomized females having improved survival despite paradoxically having increased adiposity and decreased control of blood glucose levels. Further, ovariectomy unexpectedly promotes midlife survival of female mice lacking hepatic mTORC2, significantly increasing the survival of those mice that do not develop cancer. In addition to identifying a sex hormone-dependent role for hepatic mTORC2 in female longevity, our results demonstrate that metabolic health is not inextricably linked to lifespan in mammals, and highlight the importance of evaluating healthspan in mammalian longevity studies.


Asunto(s)
Envejecimiento/fisiología , Castración/efectos adversos , Hormonas Esteroides Gonadales/metabolismo , Longevidad/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ovariectomía/efectos adversos , Transducción de Señal/fisiología , Animales , Humanos , Hígado/enzimología , Masculino , Ratones , Modelos Animales , Factores Sexuales
5.
Cell Metab ; 31(4): 741-754.e5, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32197071

RESUMEN

Identifying the causal gene(s) that connects genetic variation to a phenotype is a challenging problem in genome-wide association studies (GWASs). Here, we develop a systematic approach that integrates mouse liver co-expression networks with human lipid GWAS data to identify regulators of cholesterol and lipid metabolism. Through our approach, we identified 48 genes showing replication in mice and associated with plasma lipid traits in humans and six genes on the X chromosome. Among these 54 genes, 25 have no previously identified role in lipid metabolism. Based on functional studies and integration with additional human lipid GWAS datasets, we pinpoint Sestrin1 as a causal gene associated with plasma cholesterol levels in humans. Our validation studies demonstrate that Sestrin1 influences plasma cholesterol in multiple mouse models and regulates cholesterol biosynthesis. Our results highlight the power of combining mouse and human datasets for prioritization of human lipid GWAS loci and discovery of lipid genes.


Asunto(s)
Colesterol , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Choque Térmico/fisiología , Animales , Colesterol/sangre , Colesterol/metabolismo , Bases de Datos Genéticas , Humanos , Ratones
6.
Cell Rep ; 29(1): 236-248.e3, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577953

RESUMEN

Calorie restriction (CR) extends the healthspan and lifespan of diverse species. In mammals, a broadly conserved metabolic effect of CR is improved insulin sensitivity, which may mediate the beneficial effects of a CR diet. This model has been challenged by the identification of interventions that extend lifespan and healthspan yet promote insulin resistance. These include rapamycin, which extends mouse lifespan yet induces insulin resistance by disrupting mTORC2 (mechanistic target of rapamycin complex 2). Here, we induce insulin resistance by genetically disrupting adipose mTORC2 via tissue-specific deletion of the mTORC2 component Rictor (AQ-RKO). Loss of adipose mTORC2 blunts the metabolic adaptation to CR and prevents whole-body sensitization to insulin. Despite this, AQ-RKO mice subject to CR experience the same increase in fitness and lifespan on a CR diet as wild-type mice. We conclude that the CR-induced improvement in insulin sensitivity is dispensable for the effects of CR on fitness and longevity.


Asunto(s)
Adiposidad/fisiología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Adiposidad/efectos de los fármacos , Animales , Restricción Calórica/métodos , Ingestión de Energía/efectos de los fármacos , Ingestión de Energía/fisiología , Humanos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología
7.
Aging Cell ; 18(5): e13014, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31373126

RESUMEN

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.


Asunto(s)
Hipotálamo/metabolismo , Longevidad , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
8.
Nat Commun ; 10(1): 3194, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324799

RESUMEN

Rapamycin, an inhibitor of mechanistic Target Of Rapamycin Complex 1 (mTORC1), extends lifespan and shows strong potential for the treatment of age-related diseases. However, rapamycin exerts metabolic and immunological side effects mediated by off-target inhibition of a second mTOR-containing complex, mTOR complex 2. Here, we report the identification of DL001, a FKBP12-dependent rapamycin analog 40x more selective for mTORC1 than rapamycin. DL001 inhibits mTORC1 in cell culture lines and in vivo in C57BL/6J mice, in which DL001 inhibits mTORC1 signaling without impairing glucose homeostasis and with substantially reduced or no side effects on lipid metabolism and the immune system. In cells, DL001 efficiently represses elevated mTORC1 activity and restores normal gene expression to cells lacking a functional tuberous sclerosis complex. Our results demonstrate that highly selective pharmacological inhibition of mTORC1 can be achieved in vivo, and that selective inhibition of mTORC1 significantly reduces the side effects associated with conventional rapalogs.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Sirolimus/análogos & derivados , Sirolimus/farmacología , Animales , Línea Celular , Descubrimiento de Drogas , Expresión Génica/efectos de los fármacos , Humanos , Sistema Inmunológico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteómica , Transducción de Señal/efectos de los fármacos , Sirolimus/química , Serina-Treonina Quinasas TOR , Esclerosis Tuberosa
9.
Sci Rep ; 9(1): 67, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635612

RESUMEN

Obesity and type 2 diabetes are increasing in prevalence around the world, and there is a clear need for new and effective strategies to promote metabolic health. A low protein (LP) diet improves metabolic health in both rodents and humans, but the mechanisms that underlie this effect remain unknown. The gut microbiome has recently emerged as a potent regulator of host metabolism and the response to diet. Here, we demonstrate that a LP diet significantly alters the taxonomic composition of the gut microbiome at the phylum level, altering the relative abundance of Actinobacteria, Bacteroidetes, and Firmicutes. Transcriptional profiling suggested that any impact of the microbiome on liver metabolism was likely independent of the microbiome-farnesoid X receptor (FXR) axis. We therefore tested the ability of a LP diet to improve metabolic health following antibiotic ablation of the gut microbiota. We found that a LP diet promotes leanness, increases energy expenditure, and improves glycemic control equally well in mice treated with antibiotics as in untreated control animals. Our results demonstrate that the beneficial effects of a LP diet on glucose homeostasis, energy balance, and body composition are unlikely to be mediated by diet-induced changes in the taxonomic composition of the gut microbiome.


Asunto(s)
Aminoácidos/metabolismo , Biota , Dieta/métodos , Intestinos/microbiología , Metabolismo , Animales , Perfilación de la Expresión Génica , Ratones
10.
Sci Rep ; 8(1): 17814, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546031

RESUMEN

Type 2 diabetes is an age-and-obesity associated disease driven by impairments in glucose homeostasis that ultimately result in defective insulin secretion from pancreatic ß-cells. To deconvolve the effects of age and obesity in an experimental model of prediabetes, we fed young and aged mice either chow or a short-term high-fat/high-sucrose Western diet (WD) and examined how weight, glucose tolerance, and ß-cell function were affected. Although WD induced a similar degree of weight gain in young and aged mice, a high degree of heterogeneity was found exclusively in aged mice. Weight gain in WD-fed aged mice was well-correlated with glucose intolerance, fasting insulin, and in vivo glucose-stimulated insulin secretion, relationships that were not observed in young animals. Although ß-cell mass expansion in the WD-fed aged mice was only three-quarters of that observed in young mice, the islets from aged mice were resistant to the sharp WD-induced decline in ex vivo insulin secretion observed in young mice. Our findings demonstrate that age is associated with the protection of islet function in diet-induced obese mice, and furthermore, that WD challenge exposes variability in the resilience of the insulin secretory pathway in aged mice.


Asunto(s)
Envejecimiento/metabolismo , Dieta Occidental/efectos adversos , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Envejecimiento/patología , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/patología , Intolerancia a la Glucosa/prevención & control , Células Secretoras de Insulina/patología , Masculino , Ratones , Obesidad/etiología , Obesidad/patología , Obesidad/prevención & control
11.
FASEB J ; 32(6): 3471-3482, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401631

RESUMEN

Obesity and diabetes are major challenges to global health, and there is an urgent need for interventions that promote weight loss. Dietary restriction of methionine promotes leanness and improves metabolic health in mice and humans. However, poor long-term adherence to this diet limits its translational potential. In this study, we develop a short-term methionine deprivation (MD) regimen that preferentially reduces fat mass, restoring normal body weight and glycemic control to diet-induced obese mice of both sexes. The benefits of MD do not accrue from calorie restriction, but instead result from increased energy expenditure. MD promotes increased energy expenditure in a sex-specific manner, inducing the fibroblast growth factor (Fgf)-21-uncoupling protein (Ucp)-1 axis only in males. Methionine is an agonist of the protein kinase mechanistic target of rapamycin complex (mTORC)-1, which has been proposed to play a key role in the metabolic response to amino acid-restricted diets. In our study, we used a mouse model of constitutive hepatic mTORC1 activity and demonstrate that suppression of hepatic mTORC1 signaling is not required for the metabolic effects of MD. Our study sheds new light on the mechanisms by which dietary methionine regulates metabolic health and demonstrates the translational potential of MD for the treatment of obesity and type 2 diabetes.-Yu, D., Yang, S. E., Miller, B. R., Wisinski, J. A., Sherman, D. S., Brinkman, J. A., Tomasiewicz, J. L., Cummings, N. E., Kimple, M. E., Cryns, V. L., Lamming, D. W. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms.


Asunto(s)
Metabolismo Energético , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina/deficiencia , Obesidad/metabolismo , Caracteres Sexuales , Animales , Restricción Calórica , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Masculino , Ratones , Obesidad/dietoterapia , Obesidad/patología , Proteína Desacopladora 1/metabolismo
12.
Respir Physiol Neurobiol ; 256: 97-108, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28456608

RESUMEN

Obstructive sleep apnea (OSA) has been linked to increased mortality in pulmonary fibrosis. Its key feature, chronic intermittent hypoxia (CIH), can lead to oxidative stress and inflammation, known to lead to fibrotic pathology in other organs. We tested the effects of CIH in an animal model of bleomycin-induced lung fibrosis. Sprague Dawley rats were instilled intratracheally with bleomycin (Blm) or saline (Sal), and exposed to CIH or normal air (Norm) for 9 or 30 days. Pulmonary function was tested and lungs were harvested for histological and molecular analyses. In Blm-treated animals, 30days of CIH compared to Norm increased total lung collagen content (p=0.008) and reduced Quasi-static lung compliance (p=0.04). CIH upregulated lipid peroxidation and increased NF-κB activation, IL-17 mRNA and Col1α1 mRNA expression. Our results indicate that following Blm-induced lung injury, CIH amplifies collagen deposition via oxidative and inflammatory pathways, culminating in stiffer lungs. Thus, OSA may augment fibrosis in patients with interstitial lung disease.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Hipoxia/fisiopatología , Fibrosis Pulmonar/inducido químicamente , Análisis de Varianza , Animales , Colágeno/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Pruebas de Función Respiratoria , Factores de Tiempo , Quinasa de Factor Nuclear kappa B
14.
J Clin Invest ; 127(7): 2842-2854, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28581443

RESUMEN

The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing neuropeptide FF (NPFF), and that NPFFR2 expression is upregulated by IL-4, an M2-polarizing cytokine. Plasma levels of NPFF decreased in obese patients and high-fat diet-fed mice and increased following caloric restriction. NPFF promoted M2 activation and increased the proliferation of murine and human ATMs. Both M2 activation and increased ATM proliferation were abolished in NPFFR2-deficient ATMs. Mechanistically, the effects of NPFF involved the suppression of E3 ubiquitin ligase RNF128 expression, resulting in enhanced stability of phosphorylated STAT6 and increased transcription of the M2 macrophage-associated genes IL-4 receptor α (Il4ra), arginase 1 (Arg1), IL-10 (Il10), and alkylglycerol monooxygenase (Agmo). NPFF induced ATM proliferation concomitantly with the increase in N-Myc downstream-regulated gene 2 (Ndrg2) expression and suppressed the transcription of Ifi200 cell-cycle inhibitor family members and MAF bZIP transcription factor B (Mafb), a negative regulator of macrophage proliferation. NPFF thus plays an important role in supporting healthy adipose tissue via the maintenance of metabolically beneficial ATMs.


Asunto(s)
Tejido Adiposo/inmunología , Proliferación Celular , Activación de Macrófagos , Macrófagos/inmunología , Oligopéptidos/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Arginasa/genética , Arginasa/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/inmunología , Masculino , Ratones , Ratones Transgénicos , Oligopéptidos/genética , Proteínas/genética , Proteínas/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...