Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980300

RESUMEN

Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Radiación Ionizante , Tardigrada , Transcriptoma , Tardigrada/genética , Tardigrada/metabolismo , Animales , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Daño del ADN , Tolerancia a Radiación/genética
2.
Mar Biotechnol (NY) ; 26(3): 539-549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652191

RESUMEN

Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.


Asunto(s)
Exoesqueleto , Calcificación Fisiológica , Carbonato de Calcio , Osteoblastos , Pinctada , Animales , Ratones , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Pinctada/metabolismo , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Calcificación Fisiológica/efectos de los fármacos , Exoesqueleto/química , Supervivencia Celular/efectos de los fármacos , Línea Celular , Matriz Extracelular/metabolismo , Nácar/metabolismo , Biomineralización
3.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35041621

RESUMEN

Impaired glucose metabolism is observed in obesity and type 2 diabetes. Glucose controls gene expression through the transcription factor ChREBP in liver and adipose tissues. Mlxipl encodes 2 isoforms: ChREBPα, the full-length form (translocation into the nucleus is under the control of glucose), and ChREBPß, a constitutively nuclear shorter form. ChREBPß gene expression in white adipose tissue is strongly associated with insulin sensitivity. Here, we investigated the consequences of ChREBPß deficiency on insulin action and energy balance. ChREBPß-deficient male and female C57BL6/J and FVB/N mice were produced using CRISPR/Cas9-mediated gene editing. Unlike global ChREBP deficiency, lack of ChREBPß showed modest effects on gene expression in adipose tissues and the liver, with variations chiefly observed in brown adipose tissue. In mice fed chow and 2 types of high-fat diets, lack of ChREBPß had moderate effects on body composition and insulin sensitivity. At thermoneutrality, ChREBPß deficiency did not prevent the whitening of brown adipose tissue previously reported in total ChREBP-KO mice. These findings revealed that ChREBPß is dispensable for metabolic adaptations to nutritional and thermic challenges.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucemia/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Regulación de la Expresión Génica , ARN/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Methods Mol Biol ; 2247: 39-57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33301111

RESUMEN

Macromolecular complexes govern the majority of biological processes and are of great biomedical relevance as factors that perturb interaction networks underlie a number of diseases, and inhibition of protein-protein interactions is a common strategy in drug discovery. Genome editing technologies enable precise modifications in protein coding genes in mammalian cells, offering the possibility to introduce affinity tags or fluorescent reporters for proteomic or imaging applications in the bona fide cellular context. Here we describe a streamlined procedure which uses the CRISPR/Cas9 system and a double-stranded donor plasmid for efficient generation of homozygous endogenously GFP-tagged human cell lines. Establishing cellular models that preserve native genomic regulation of the target protein is instrumental to investigate protein localization and dynamics using fluorescence imaging but also to affinity purify associated protein complexes using anti-GFP antibodies or nanobodies.


Asunto(s)
Sistemas CRISPR-Cas , ADN/genética , Edición Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes de Fusión/genética , Secuencia de Bases , Clonación Molecular , Citometría de Flujo , Expresión Génica , Marcación de Gen , Células HEK293 , Humanos , Microscopía Fluorescente , Modelos Moleculares , Plásmidos/genética , Conformación Proteica , ARN Guía de Kinetoplastida , Proteínas Recombinantes de Fusión/química , Relación Estructura-Actividad
5.
Lipids ; 54(8): 433-444, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206721

RESUMEN

The flesh of the Pinctada radiata pearl oyster from coastal Tunisia is considered as a high source of n-3 and n-6 and its shell nacre layer is a promising osteogenic biomaterial. Fatty acid (FA) analysis showed that the major components found in total FA (TFA) were 14:0, 16:0, and 18:0 saturated FA (SFA); 16:1, 18:1, and 20:1 monoenoic FA; 20:4n-6 (ARA), 22:5n-3 (DPA). Characteristically high levels of 20:5n-3 (EPA) and 22:6n-3 (DHA) (6.53-89.75 mg/100 g TFA) polyunsaturated FA (PUFA) were found, respectively, in the TFA of nacre and flesh. Evaluated the effects in vitro of lipids extracted from nacre (Ln) and from flesh (Lc) of P. radiata on growth and the differentiation of osteoblasts. Cytotoxicity tests (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide [MTT] and lactic acid dehydrogenase c [LDH]) demonstrated that both extracts are nontoxic. Alizarin Red staining was used in an osteoblast differentiation model using the osteoblast MC3T3-E1 cell line. It showed that the FA of both extracts induced osteoblast differentiation leading to mineralization. Reverse transcription-polymerase chain reaction (RT-PCR) showed a significantly higher expression of osteocalcin (Bglap) and runt-related transcription (Runx2) in MC3T3-E1 cells in the presence of Ln. No difference of osteopontin (Spp1) and Collagen type I (Col1a1) genes compared to the control was observed. In conclusion, these results supported, obtained from our in vitro experimental model used, the interest/potential of lipids extracted from nacre and P. radiata flesh to stimulate bone formation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Lípidos/farmacología , Osteogénesis/efectos de los fármacos , Pinctada/química , Células 3T3 , Animales , Células Cultivadas , Ácidos Grasos/análisis , Ácidos Grasos/farmacología , Lípidos/análisis , Ratones , Túnez
6.
EMBO J ; 36(17): 2595-2608, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694242

RESUMEN

DNA double-strand breaks (DSBs) induce a cellular response that involves histone modifications and chromatin remodeling at the damaged site and increases chromosome dynamics both locally at the damaged site and globally in the nucleus. In parallel, it has become clear that the spatial organization and dynamics of chromosomes can be largely explained by the statistical properties of tethered, but randomly moving, polymer chains, characterized mainly by their rigidity and compaction. How these properties of chromatin are affected during DNA damage remains, however, unclear. Here, we use live cell microscopy to track chromatin loci and measure distances between loci on yeast chromosome IV in thousands of cells, in the presence or absence of genotoxic stress. We confirm that DSBs result in enhanced chromatin subdiffusion and show that intrachromosomal distances increase with DNA damage all along the chromosome. Our data can be explained by an increase in chromatin rigidity, but not by chromatin decondensation or centromeric untethering only. We provide evidence that chromatin stiffening is mediated in part by histone H2A phosphorylation. Our results support a genome-wide stiffening of the chromatin fiber as a consequence of DNA damage and as a novel mechanism underlying increased chromatin mobility.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Saccharomycetales/genética , Bleomicina/farmacología , ADN de Hongos/genética , Mutágenos/farmacología , Fosforilación , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo
7.
J Biomed Mater Res A ; 105(2): 662-671, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27750380

RESUMEN

During the past two decades, with a huge and rapidly increasing clinical need for bone regeneration and repair, bone substitutes are more and more seen as a potential solution. Major innovation efforts are being made to develop such substitutes, some having advanced even to clinical practice. It is now time to turn to natural biomaterials. Nacre, or mother-of-pearl, is an organic matrix-calcium carbonate coupled shell structure produced by molluscs. In vivo and in vitro studies have revealed that nacre is osteoinductive, osteoconductive, biocompatible, and biodegradable. With many other outstanding qualities, nacre represents a natural and multi-use biomaterial as a bone graft substitute. This review aims at summarising the current needs in orthopaedic clinics and the challenges for the development of bone substitutes; most of all, we systematically review the physiological characteristics and biological evidence of nacre's effects centred on osteogenesis, and finally we put forward the potential use of nacre as a bone graft substitute. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 662-671, 2017.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/uso terapéutico , Nácar/uso terapéutico , Osteogénesis/efectos de los fármacos , Animales , Sustitutos de Huesos/química , Humanos , Nácar/química
8.
J Cell Sci ; 129(4): 681-92, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26763908

RESUMEN

Eukaryotic chromosomes undergo movements that are involved in the regulation of functional processes such as DNA repair. To better understand the origin of these movements, we used fluorescence microscopy, image analysis and chromosome conformation capture to quantify the actin contribution to chromosome movements and interactions in budding yeast. We show that both the cytoskeletal and nuclear actin drive local chromosome movements, independently of Csm4, a putative LINC protein. Inhibition of actin polymerization reduces subtelomere dynamics, resulting in more confined territories and enrichment in subtelomeric contacts. Artificial tethering of actin to nuclear pores increased both nuclear pore complex (NPC) and subtelomere motion. Chromosome loci that were positioned away from telomeres exhibited reduced motion in the presence of an actin polymerization inhibitor but were unaffected by the lack of Csm4. We further show that actin was required for locus mobility that was induced by targeting the chromatin-remodeling protein Ino80. Correlated with this, DNA repair by homologous recombination was less efficient. Overall, interphase chromosome dynamics are modulated by the additive effects of cytoskeletal actin through forces mediated by the nuclear envelope and nuclear actin, probably through the function of actin in chromatin-remodeling complexes.


Asunto(s)
Actinas/fisiología , Cromosomas Fúngicos/fisiología , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de la Membrana/fisiología , Poro Nuclear/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...