Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436024

RESUMEN

The mammalian crown originated during the Mesozoic and subsequently radiated into the substantial array of forms now extant. However, for about 100 million years before the crown's origin, a diverse array of stem mammalian lineages dominated terrestrial ecosystems. Several of these stem lineages overlapped temporally and geographically with the crown mammals during the Mesozoic, but by the end of the Cretaceous crown mammals make up the overwhelming majority of the fossil record. The progress of this transition between ecosystems dominated by stem mammals and those dominated by crown mammals is not entirely clear, in part due to a distinct separation of analyses and datasets. Analyses of macroevolutionary patterns tend to focus on either the Mammaliaformes or the non-mammalian cynodonts, with little overlap in the datasets, preventing direct comparison of the diversification trends. Here I analyse species richness and biogeography of Synapsida as a whole during the Mesozoic, allowing comparison of the patterns in the mammalian crown and stem within a single framework. The analysis reveals the decline of the stem mammals occurred in two discrete phases. The first phase occurred between the Triassic and Middle Jurassic, during which the stem mammals were more restricted in their geographic range than the crown mammals, although within localities their species richness remained at levels seen previously. The second phase was a decline in species richness, which occurred during the Lower Cretaceous. The results show the decline of stem mammals, including tritylodontids and several mammaliaform groups, was not tied to a specific event, nor a gradual decline, but was instead a multiphase transition.


Asunto(s)
Ecosistema , Fósiles , Animales , Mamíferos
2.
Proc Biol Sci ; 291(2016): 20232618, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351798

RESUMEN

The origin of crown birds (Neornithes) remains contentious owing to conflicting divergence time hypotheses obtained from alternative sources of data. The fossil record suggests limited diversification of Neornithes in the Late Mesozoic and a substantial radiation in the aftermath of the Cretaceous-Palaeogene (K-Pg) mass extinction, approximately 66 Ma. Molecular clock studies, however, have yielded estimates for neornithine origins ranging from the Early Cretaceous (130 Ma) to less than 10 Myr before the K-Pg. We use Bayes factors to compare the fit of node ages from different molecular clock studies to an independent morphological dataset. Our results allow us to reject scenarios of crown bird origins deep in the Early Cretaceous, as well as an origin of crown birds within the last 10 Myr of the Cretaceous. The scenario best supported by our analyses is one where Neornithes originated between the Early and Late Cretaceous (ca 100 Ma), while numerous divergences within major neoavian clades either span or postdate the K-Pg. This study affirms the importance of the K-Pg on the diversification of modern birds, and the potential of combined-evidence tip-dating analyses to illuminate recalcitrant 'rocks versus clocks' debates.


Asunto(s)
Aves , Extinción Biológica , Animales , Filogenia , Teorema de Bayes , Aves/anatomía & histología , Fósiles , Evolución Biológica
3.
Syst Biol ; 71(5): 1195-1209, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35274702

RESUMEN

The origin of amniotes 320 million years ago signaled independence from water in vertebrates and was closely followed by divergences within the mammal and reptile stem lineages (Synapsida and Reptilia). Early members of both groups had highly similar morphologies, being superficially "lizard-like" forms with many plesiomorphies. However, the extent to which they might have exhibited divergent patterns of evolutionary change, with the potential to explain the large biological differences between their living members, is unresolved. We use a new, comprehensive phylogenetic dataset to quantify variation in rates and constraints of morphological evolution among Carboniferous-early Permian amniotes. We find evidence for an early burst of evolutionary rates, resulting in the early origins of morphologically distinctive subgroups that mostly persisted through the Cisuralian. Rates declined substantially through time, especially in reptiles. Early reptile evolution was also more constrained compared with early synapsids, exploring a more limited character state space. Postcranial innovation in particular was important in early synapsids, potentially related to their early origins of large body size. In contrast, early reptiles predominantly varied the temporal region, suggesting disparity in skull and jaw kinematics, and foreshadowing the variability of cranial biomechanics seen in reptiles today. Our results demonstrate that synapsids and reptiles underwent an early divergence of macroevolutionary patterns. This laid the foundation for subsequent evolutionary events and may be critical in understanding the substantial differences between mammals and reptiles today. Potential explanations include an early divergence of developmental processes or of ecological factors, warranting cross-disciplinary investigation. [Amniote; body size; constraint; phylogeny; rate.].


Asunto(s)
Evolución Biológica , Reptiles , Animales , Fósiles , Mamíferos , Filogenia , Vertebrados/anatomía & histología
4.
Nat Ecol Evol ; 5(9): 1243-1249, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34312521

RESUMEN

Early terrestrial vertebrates (amniotes) provide a classic example of diversification following adaptive zone invasion. The initial terrestrialization of vertebrates was closely followed by dietary diversification, as evidenced by a proliferation of craniomandibular and dental adaptations. However, morphological evolution of early amniotes has received limited study, in analyses with restricted taxonomic scope, leaving substantial questions about the dynamics of this important terrestrial radiation. We use novel analyses of discrete characters to quantify variation in evolutionary rates and constraints during diversification of the amniote feeding apparatus. We find evidence for an early burst, comprising high rates of anatomical change that decelerated through time, giving way to a background of saturated morphological evolution. Subsequent expansions of phenotypic diversity were not associated with increased evolutionary rates. Instead, variation in the mode of evolution became important, with groups representing independent origins of herbivory evolving distinctive, group-specific morphologies and thereby exploring novel character-state spaces. Our findings indicate the importance of plant-animal interactions in structuring the earliest radiation of amniotes and demonstrate the importance of variation in modes of phenotypic divergence during a major evolutionary radiation.


Asunto(s)
Evolución Biológica , Vertebrados , Adaptación Fisiológica , Animales , Herbivoria , Filogenia
5.
Curr Biol ; 31(13): 2955-2963.e4, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34004143

RESUMEN

Adaptive radiations are hypothesized as a generating mechanism for much of the morphological diversity of extant species.1-7 The Cenozoic radiation of placental mammals, the foundational example of this concept,8,9 gave rise to much of the morphological disparity of extant mammals, and is generally attributed to relaxed evolutionary constraints following the extinction of non-avian dinosaurs.10-13 However, study of this and other radiations has focused on variation in evolutionary rates,4,5,7,14 leaving the extent to which relaxation of constraints enabled the origin of novel phenotypes less well characterized.15-17 We evaluate constraints on morphological evolution among mammaliaforms (mammals and their closest relatives) using a new method that quantifies the capacity of evolutionary change to generate phenotypic novelty. We find that Mesozoic crown-group therians, which include the ancestors of placental mammals, were significantly more constrained than other mammaliaforms. Relaxation of these constraints occurred in the mid-Paleocene, post-dating the extinction of non-avian dinosaurs at the K/Pg boundary, instead coinciding with important environmental shifts and with declining ecomorphological diversity in non-theriimorph mammaliaforms. This relaxation occurred even in small-bodied Cenozoic mammals weighing <100 g, which are unlikely to have competed with dinosaurs. Instead, our findings support a more complex model whereby Mesozoic crown therian evolution was in part constrained by co-occurrence with disparate mammaliaforms, as well as by the presence of dinosaurs, within-lineage incumbency effects, and environmental factors. Our results demonstrate that variation in evolutionary constraints can occur independently of variation in evolutionary rate, and that both make important contributions to the understanding of adaptive radiations.


Asunto(s)
Evolución Biológica , Extinción Biológica , Mamíferos/anatomía & histología , Mamíferos/clasificación , Animales , Dinosaurios , Femenino , Fósiles , Filogenia , Placenta , Embarazo
6.
iScience ; 24(3): 102243, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33763634

RESUMEN

Several potential drivers of avian tooth loss have been proposed, although consensus remains elusive as fully toothless jaws arose independently numerous times among Mesozoic avialans and dinosaurs more broadly. The origin of crown bird edentulism has been discussed in terms of a broad-scale selective pressure or trend toward toothlessness, although this has never been quantitatively tested. Here, we find no evidence for models whereby iterative acquisitions of toothlessness among Mesozoic Avialae were driven by an overarching selective trend. Instead, our results support modularity among jaw regions underlying heterogeneous tooth loss patterns and indicate a substantially later transition to complete crown bird edentulism than previously hypothesized (∼90 mya). We show that patterns of avialan tooth loss adhere to Dollo's law and suggest that the exclusive survival of toothless birds to the present represents lineage-specific selective pressures, irreversibility of tooth loss, and the filter of the Cretaceous-Paleogene (K-Pg) mass extinction.

7.
Syst Biol ; 70(4): 707-718, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33104202

RESUMEN

The use of ordered characters in phylogenetic analysis has been inconsistent throughout the history of phylogenetic inference. It has become more widespread in recent years, and some have advocated that all characters representing continuous or meristic traits should be ordered as a matter of course. Here, using the example of dental evolution, we examine two factors that may impact on whether meristic characters actually evolve in an ordered manner: the regulatory hierarchy governing the development of teeth that allows large sections of the entire tooth row to be suppressed in a single transition and regionalization of the tooth row where different modules have a degree of independence in their evolution. These are studied using both empirical and simulated data. Models of evolution of such characters are examined over molecular phylogenies to see if ordered or unordered models fit best. Simulations of tooth-row evolution are designed to incorporate changes in region size and multiple levels of developmental control to suppress individual regions or the entire row. The empirical analyses show that in a clade with largely homodont dentition the characters evolve in an ordered manner, but if dentition is heterodont with distinct regionalization their evolution better fits an unordered model. In the simulations, even if teeth are added and removed from the tooth row in an ordered manner, dividing the row into independently evolving modules can lead to characters covering multiple modules better fitting an unordered model of evolution. Adding the ability to suppress regions or the entire tooth row has a variable effect depending on the rates of suppression relative to the rates of addition and subtraction of individual teeth. We therefore advise not following a single policy when deciding whether to order meristic traits but to base the decision on a priori knowledge of the focal clade's evolution and developmental biology. [Discrete characters; ordered characters; phylogeny; teeth.].


Asunto(s)
Diente , Evolución Biológica , Fenotipo , Filogenia
8.
Proc Biol Sci ; 287(1928): 20200154, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32517621

RESUMEN

Adaptive radiations and mass extinctions are of critical importance in structuring terrestrial ecosystems. However, the causes and progress of these transitions often remain controversial, in part because of debates surrounding the completeness of the fossil record and biostratigraphy of the relevant fossil-bearing formations. The early-middle Permian, when a substantial faunal turnover in tetrapods coincided with a restructuring of the trophic structure of ecosystems, is such a time. Some have suggested the transition is obscured by a gap in the tetrapod fossil record (Olson's Gap), while others suggest a correlation between North American and Russian tetrapod-bearing formations allows the interval to be documented in detail. The latter biostratigraphic scheme has been used to support a mass extinction at this time (Olson's Extinction). Bayesian tip-dating methods used frequently in phylogenetics are employed to resolve this debate. Bayes factors are used to compare the results of analyses incorporating tip age priors based on different stratigraphic hypotheses, to show which stratigraphic scheme best fits the morphological data and phylogeny. Olson's Gap is rejected, and the veracity of Olson's Extinction is given further support. Tip-dating approaches have great potential to resolve debates surrounding the stratigraphic ages of critical formations where appropriate morphological data is available.


Asunto(s)
Evolución Biológica , Extinción Biológica , Animales , Teorema de Bayes , Ecosistema , Fósiles , Filogenia , Incertidumbre
9.
Proc Biol Sci ; 287(1928): 20200124, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32517628

RESUMEN

The origin of herbivory in the Carboniferous was a landmark event in the evolution of terrestrial ecosystems, increasing ecological diversity in animals but also giving them greater influence on the evolution of land plants. We evaluate the effect of early vertebrate herbivory on plant evolution by comparing local species richness of plant palaeofloras with that of vertebrate herbivores and herbivore body size. Vertebrate herbivores became diverse and achieved a much greater range of body sizes across the Carboniferous-Permian transition interval. This coincides with an abrupt reduction in local plant richness that persists throughout the Permian. Time-series regression analysis supports a negative relationship of plant richness with herbivore richness but a positive relationship of plant richness with minimum herbivore body size. This is consistent with studies of present-day ecosystems in which increased diversity of smaller, more selective herbivores places greater predation pressures on plants, while a prevalence of larger bodied, less selective herbivores reduces the dominance of a few highly tolerant plant species, thereby promoting greater local richness. The diversification of herbivores across the Carboniferous-Permian boundary, along with the appearance of smaller, more selective herbivores like bolosaurid parareptiles, constrained plant diversity throughout the Permian. These findings demonstrate that the establishment of widespread vertebrate herbivory has structured plant communities since the late Palaeozoic, as expected from examination of modern ecosystems, and illustrates the potential for fossil datasets in testing palaeoecological hypotheses.


Asunto(s)
Biodiversidad , Evolución Biológica , Herbivoria , Plantas , Animales , Ecosistema , Fósiles
10.
PeerJ ; 8: e8744, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231876

RESUMEN

Accurate reconstructions of phylogeny are essential for studying the evolution of a clade, and morphological characters are necessarily used for the reconstruction of the relationships of fossil organisms. However, variation in their evolutionary modes (for example rate variation and character non-independence) not accounted for in analyses may be leading to unreliable phylogenies. A recent study suggested that phylogenetic analyses of mammals may be suffering from a dominance of dental characters, which were shown to have lower phylogenetic signal than osteological characters and produced phylogenies less congruent with molecularly-derived benchmarks. Here we build on this previous work by testing five additional morphological partitions for phylogenetic signal and examining what aspects of dental and other character evolution may be affecting this, by fitting models of discrete character evolution to phylogenies inferred and time calibrated using molecular data. Results indicate that the phylogenetic signal of discrete characters correlate most strongly with rates of evolution, with increased rates driving increased homoplasy. In a dataset covering all Mammalia, dental characters have higher rates of evolution than other partitions. They do not, however, fit a model of independent character evolution any worse than other regions. Primates and marsupials show different patterns to other mammal clades, with dental characters evolving at slower rates and being more heavily integrated (less independent). While the dominance of dental characters in analyses of mammals could be leading to inaccurate phylogenies, the issue is not unique to dental characters and the results are not consistent across datasets. Molecular benchmarks (being entirely independent of the character data) provide a framework for examining each dataset individually to assess the evolution of the characters used.

11.
Proc Biol Sci ; 286(1900): 20190590, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30966993

RESUMEN

Large carnivorous mammals have been suggested to show a ratchet-like mode of morphological evolution. A limited number of specializations for hypercarnivory evolve repeatedly in multiple clades, with those lineages evolving such specialities being unable to retreat back along their evolutionary trajectory or jump between adaptive peaks. While it has been hypothesized that such mechanisms should have applied to the evolution of other terrestrial carnivores, the non-mammalian synapsid clade Therocephalia appears to defy this expectation. The earliest, basalmost members of this clade are large macropredators, and it is later that small carnivores appear, seemingly evolving from top-predator ancestors. In order to test this reading of therocephalian evolution, variation in rates of body size evolution were tested for and incorporated into an ancestral reconstruction. Similar studies were made of the evolution of discrete characters related to carnivory. All analyses indicate the ancestral therocephalian was a large macro-predator, with serrated teeth, elongated canines and robust lower jaws. Small sizes apparently evolve later. It is therefore suggested that the hypercarnivore ratchet is a feature of mammalian evolution.


Asunto(s)
Evolución Biológica , Carnivoría , Fósiles/anatomía & histología , Mamíferos/anatomía & histología , Reptiles/anatomía & histología , Animales , Mamíferos/fisiología , Reptiles/fisiología
12.
Proc Biol Sci ; 286(1899): 20182572, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30890099

RESUMEN

The amniote clade Parareptilia is notable in that members of the clade exhibited a wide array of morphologies, were successful in a variety of ecological niches and survived the end-Permian mass extinction. In order to better understand how mass extinction events can affect clades that survive them, we investigate both the species richness and morphological diversity (disparity) of parareptiles over the course of their history. Furthermore, we examine our observations in the context of other metazoan clades, in order to identify post-extinction survivorship patterns that are present in the clade. The results of our study indicate that there was an early increase in parareptilian disparity, which then fluctuated over the course of the Permian, before it eventually declined sharply towards the end of the Permian and into the Triassic, corresponding with the end-Permian mass extinction event. Interestingly, this is a different trend to what is observed regarding parareptile richness, that shows an almost continuous increase until its overall peak at the end of the Late Permian. Moreover, richness did not experience the same sharp drop at the end of the Permian, reaching a plateau until the Anisian, before dropping sharply and remaining low, with the clade going extinct at the end of the Triassic. This observed pattern is likely to be due to the fact that, despite the extinction of several morphologically distinct parareptile clades, the procolophonoids, one of the largest parareptilian clades, were diversifying across the Permian-Triassic boundary. With the clade's low levels of disparity and eventually declining species richness, this pattern most resembles a 'dead clade walking' pattern.


Asunto(s)
Biodiversidad , Evolución Biológica , Extinción Biológica , Reptiles , Animales , Fósiles , Filogenia , Reptiles/clasificación
13.
Sci Rep ; 9(1): 5063, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911058

RESUMEN

Mass extinctions have the potential to substantially alter the evolutionary trends in a clade. If new regions of ecospace are made available, the clade may radiate. If, on the other hand, the clade passes through an evolutionary "bottleneck" by substantially reducing its species richness, then subsequent radiations may be restricted in the disparity they attain. Here we compare the patterns of diversity and disparity in the Therocephalia, a diverse lineage of amniotes that survived two mass extinction events. We use time calibrated phylogeny and discrete character data to assess macroevolutionary patterns. The two are coupled through the early history of therocephalians, including a radiation following the late Guadalupian extinction. Diversity becomes decoupled from disparity across the end-Permian mass extinction. The number of species decreases throughout the Early Triassic and never recovers. However, while disparity briefly decreases across the extinction boundary, it recovers and remains high until the Middle Triassic.


Asunto(s)
Biodiversidad , Evolución Biológica , Cactaceae , Extinción Biológica , Cactaceae/clasificación , Cactaceae/genética , Fósiles , Filogenia
14.
Nat Commun ; 9(1): 5216, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523258

RESUMEN

The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The influence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some identifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are characterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity.


Asunto(s)
Anfibios/fisiología , Distribución Animal/fisiología , Ambiente , Fósiles , Anfibios/clasificación , Animales , Clima , Cambio Climático , Fenómenos Geológicos , Filogeografía
15.
PeerJ ; 6: e4767, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29780669

RESUMEN

It has been suggested that a transition between a pelycosaurian-grade synapsid dominated fauna of the Cisuralian (early Permian) and the therapsid dominated fauna of the Guadalupian (middle Permian) was accompanied by, and possibly driven by, a mass extinction dubbed Olson's Extinction. However, this interpretation of the record has recently been criticised as being a result of inappropriate time-binning strategies: calculating species richness within international stages or substages combines extinctions occurring throughout the late Kungurian stage into a single event. To address this criticism, I examine the best record available for the time of the extinction, the tetrapod-bearing formations of Texas, at a finer stratigraphic scale than those previously employed. Species richness is calculated using four different time-binning schemes: the traditional Land Vertebrate Faunachrons (LVFs); a re-definition of the LVFs using constrained cluster analysis; individual formations treated as time bins; and a stochastic approach assigning specimens to half-million-year bins. Diversity is calculated at the genus and species level, both with and without subsampling, and extinction rates are also inferred. Under all time-binning schemes, both at the genus and species level, a substantial drop in diversity occurs during the Redtankian LVF. Extinction rates are raised above background rates throughout this time, but the biggest peak occurs in the Choza Formation (uppermost Redtankian), coinciding with the disappearance from the fossil record of several of amphibian clades. This study, carried out at a finer stratigraphic scale than previous examinations, indicates that Olson's Extinction is not an artefact of the method used to bin data by time in previous analyses.

16.
Proc Biol Sci ; 285(1872)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29436503

RESUMEN

The Carboniferous and early Permian were critical intervals in the diversification of early four-limbed vertebrates (tetrapods), yet the major patterns of diversity and biogeography during this time remain unresolved. Previous estimates suggest that global tetrapod diversity rose continuously across this interval and that habitat fragmentation following the 'Carboniferous rainforest collapse' (CRC) drove increased endemism among communities. However, previous work failed to adequately account for spatial and temporal biases in sampling. Here, we reassess early tetrapod diversity and biogeography with a new global species-level dataset using sampling standardization and network biogeography methods. Our results support a tight relationship between observed richness and sampling, particularly during the Carboniferous. We found that subsampled species richness initially increased into the late Carboniferous, then decreased substantially across the Carboniferous/Permian boundary before slowly recovering in the early Permian. Our analysis of biogeography does not support the hypothesis that the CRC drove endemism; instead, we found evidence for increased cosmopolitanism in the early Permian. While a changing environment may have played a role in reducing diversity in the earliest Permian, our results suggest that the CRC was followed by increased global connectivity between communities, possibly reflecting both reduced barriers to dispersal and the diversification of amniotes.


Asunto(s)
Anfibios , Biodiversidad , Evolución Biológica , Ecosistema , Reptiles , Animales , Fósiles , Bosque Lluvioso
17.
Sci Rep ; 7(1): 17531, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235515

RESUMEN

The relationship between diversity and disparity during the evolutionary history of a clade provides unique insights into evolutionary radiations and the biological response to bottlenecks and to extinctions. Here we present the first comprehensive comparison of diversity and disparity of captorhinids, a group of basal amniotes that is important for understanding the early evolution of high-fiber herbivory. A new fully resolved phylogeny is presented, obtained by the inclusion of 31 morphometric characters. The new dataset is used to calculate diversity and disparity through the evolutionary history of the clade, using both discrete and continuous characters. Captorhinids do not show a decoupling between diversity and disparity, and are characterized by a rather symmetric disparity distribution, with a peak in occupied morphospace at about the midpoint of the clade's evolutionary history (Kungurian). This peak represents a delayed adaptive radiation, identified by the first appearance of several high-fiber herbivores in the clade, along with numerous omnivorous taxa. The discrete characters and continuous morphometric characters indicate the same disparity trends. Therefore, we argue that in the absence of one of these two possible proxies, the disparity obtained from just one source can be considered robust and representative of a general disparity pattern.


Asunto(s)
Biodiversidad , Evolución Biológica , Reptiles , Animales , Carnivoría , Dieta , Herbivoria , Modelos Biológicos , Filogenia , Análisis de Componente Principal
18.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28381616

RESUMEN

The terrestrial vertebrate fauna underwent a substantial change in composition between the lower and middle Permian. The lower Permian fauna was characterized by diverse and abundant amphibians and pelycosaurian-grade synapsids. During the middle Permian, a therapsid-dominated fauna, containing a diverse array of parareptiles and a considerably reduced richness of amphibians, replaced this. However, it is debated whether the transition is a genuine event, accompanied by a mass extinction, or whether it is merely an artefact of the shift in sampling from the palaeoequatorial latitudes to the palaeotemperate latitudes. Here we use an up-to-date biostratigraphy and incorporate recent discoveries to thoroughly review the Permian tetrapod fossil record. We suggest that the faunal transition represents a genuine event; the lower Permian temperate faunas are more similar to lower Permian equatorial faunas than middle Permian temperate faunas. The transition was not consistent across latitudes; the turnover occurred more rapidly in Russia, but was delayed in North America. The argument that the mass extinction is an artefact of a latitudinal biodiversity gradient and a shift in sampling localities is rejected: sampling correction demonstrates an inverse latitudinal biodiversity gradient was prevalent during the Permian, with peak diversity in the temperate latitudes.


Asunto(s)
Biodiversidad , Extinción Biológica , Animales , Fósiles , América del Norte , Federación de Rusia
19.
PeerJ ; 5: e3200, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28417061

RESUMEN

The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an "adaptive radiation": an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two. Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous diet and the radiation event.

20.
PLoS One ; 11(6): e0156810, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27333277

RESUMEN

'Mycterosaurus' smithae, from the Cisuralian (early Permian) of Colorado, was first described in 1965 as a second species of the genus Mycterosaurus. While the type species of this genus, M. longiceps, has been shown by multiple cladistic analyses to belong to the basal synapsid family Varanopidae, 'M.' smithae has been largely ignored since its original description. Additional preparation and synchrotron scanning has revealed new significant information that supports the assignment of this species to a new genus: Vaughnictis gen. nov. Vaughnictis lacks many of the characteristics of mycterosaurines and varanopids in general: it lacks the slender femur, the linguo-labially compressed and strongly recurved teeth, and the lateral boss on the postorbital characteristic of this family. Instead, it possesses coronoid teeth, a large supratemporal, and a large pineal foramen positioned midway along the length of the parietal, features that support its assignment to Eothyrididae. Moreover, the postcranium shares many characters with the eothyridid Oedaleops. An expanded version of a recently published phylogenetic analysis of pelycosaurian-grade synapsids positions Vaughnictis as the sister taxon of Eothyris within the clade Eothyrididae. The addition of data on the postcranium of eothyridids and the inclusion of the recently-described basal caseid Eocasea confirms the recently-disputed position of caseasaurs as the most basal synapsids. As the parsimony analysis produced low support values and a lack of resolution due to missing data, additional analyses were undertaken using Bayesian and Implied Weights methods, which produced better resolution and relationships with higher support values. While the results are similar, alternative positions for the enigmatic Moscovian age (Carboniferous) synapsid Echinerpeton are suggested by Bayesian analysis; the parsimony analysis found it to be an ophiacodontid, while the Bayesian and Implied Weights analysis found it to be the sister to the Sphenacomorpha.


Asunto(s)
Fósiles , Filogenia , Reptiles/anatomía & histología , Animales , Teorema de Bayes , Procesamiento de Imagen Asistido por Computador , Columna Vertebral/anatomía & histología , Sincrotrones , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...