Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(22): e2200468119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613051

RESUMEN

Aggregation of initially stably structured proteins is involved in more than 20 human amyloid diseases. Despite intense research, however, how this class of proteins assembles into amyloid fibrils remains poorly understood, principally because of the complex effects of amino acid substitutions on protein stability, solubility, and aggregation propensity. We address this question using ß2-microglobulin (ß2m) as a model system, focusing on D76N-ß2m that is involved in hereditary amyloidosis. This amino acid substitution causes the aggregation-resilient wild-type protein to become highly aggregation prone in vitro, although the mechanism by which this occurs remained elusive. Here, we identify the residues key to protecting ß2m from aggregation by coupling aggregation with antibiotic resistance in E. coli using a tripartite ß-lactamase assay (TPBLA). By performing saturation mutagenesis at three different sites (D53X-, D76X-, and D98X-ß2m) we show that residue 76 has a unique ability to drive ß2m aggregation in vivo and in vitro. Using a randomly mutated D76N-ß2m variant library, we show that all of the mutations found to improve protein behavior involve residues in a single aggregation-prone region (APR) (residues 60 to 66). Surprisingly, no correlation was found between protein stability and protein aggregation rate or yield, with several mutations in the APR decreasing aggregation without affecting stability. Together, the results demonstrate the power of the TPBLA to develop proteins that are resilient to aggregation and suggest a model for D76N-ß2m aggregation involving the formation of long-range couplings between the APR and Asn76 in a nonnative state.


Asunto(s)
Amiloidosis , Agregación Patológica de Proteínas , Microglobulina beta-2 , Sustitución de Aminoácidos , Proteínas Amiloidogénicas/genética , Amiloidosis/genética , Pruebas de Enzimas , Escherichia coli , Humanos , Mutación Puntual , Agregación Patológica de Proteínas/genética , Pliegue de Proteína , Microglobulina beta-2/química , Microglobulina beta-2/genética , beta-Lactamasas
2.
Phys Biol ; 7: 14001, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20009191

RESUMEN

A statistical calculation is described with which the saw-tooth-like unfolding patterns of concatenated heteropolymeric proteins can be used to estimate the forced unfolding parameters of a previously uncharacterized protein. The chance of observing the various sequences of unfolding events, such as ABAABBB or BBAAABB etc, for two proteins of types A and B is calculated using proteins with various ratios of A and B and at different values of effective unfolding rate constants. If the experimental rate constant for forced unfolding, k(0), and distance to the transition state x(u) are known for one protein, then the calculation allows an estimation of values for the other. The predictions are compared with Monte Carlo simulations and experimental data.


Asunto(s)
Pliegue de Proteína , Proteínas/química , Secuencia de Aminoácidos , Método de Montecarlo , Estructura Terciaria de Proteína
3.
Biochem Soc Trans ; 35(Pt 6): 1564-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18031267

RESUMEN

The mechanical strength of single protein molecules can be investigated by using the atomic force microscope. By applying this technique to a wide range of proteins, it appears that the type of secondary structure and its orientation relative to the extension points are important determinants of mechanical strength. Unlike chemical denaturants, force acts locally and the mechanical strength of a protein may thus appear to be mechanically weak or strong by simply varying the region of the landscape through which the protein is unfolded. Similarly, the effect of ligand binding on the mechanical resistance of a protein may also depend on the relative locations of the binding site and force application. Mechanical deformation may thus facilitate the degradation or remodelling of thermodynamically stable proteins and their complexes in vivo.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Proteínas/química , Sitios de Unión , Ligandos , Modelos Moleculares , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Sensibilidad y Especificidad , Termodinámica
4.
Curr Opin Struct Biol ; 10(1): 16-25, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10679463

RESUMEN

During the past year, advances in our understanding of folding mechanisms have been made through detailed experimental and theoretical studies of a number of proteins. The development of new methods has allowed the earliest events in folding to be probed and the measurement of folding at the level of individual molecules is now possible, opening the door to exciting new experiments.


Asunto(s)
Pliegue de Proteína , Animales , Fenómenos Químicos , Química Física , Predicción , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Conformación Proteica , Desnaturalización Proteica/efectos de los fármacos , Ingeniería de Proteínas , Soluciones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA