RESUMEN
BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February-2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February-June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1â¯week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.
Asunto(s)
COVID-19 , Pandemias , Filogenia , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/transmisión , Suecia/epidemiología , SARS-CoV-2/genética , Femenino , Masculino , Viaje , AdultoRESUMEN
BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic. The understanding of the transmission and the duration of viral shedding in SARS-CoV-2 infection is still limited. OBJECTIVES: To assess the timeframe and potential risk of SARS-CoV-2 transmission from hospitalized COVID-19 patients in relation to antibody response. METHOD: We performed a cross-sectional study of 36 COVID-19 patients hospitalized at Karolinska University Hospital. Patients with more than 8 days of symptom duration were sampled from airways, for PCR analysis of SARS-CoV-2 RNA and in vitro culture of replicating virus. Serum SARS-CoV-2-specific immunoglobulin G (IgG) and neutralizing antibodies titers were assessed by immunofluorescence assay (IFA) and microneutralization assay. RESULTS: SARS-CoV-2 RNA was detected in airway samples in 23 patients (symptom duration median 15 days, range 9-53 days), whereas 13 patients were SARS-CoV-2 RNA negative (symptom duration median 21 days, range 10-37 days). Replicating virus was detected in samples from 4 patients at 9-16 days. All but two patients had detectable levels of SARS-CoV-2-specific IgG in serum, and SARS-CoV-2 neutralizing antibodies were detected in 33 out of 36 patients. Total SARS-CoV-2-specific IgG titers and neutralizing antibody titers were positively correlated. High levels of both total IgG and neutralizing antibody titers were observed in patients sampled later after symptom onset and in patients where replicating virus could not be detected. CONCLUSIONS: Our data suggest that the presence of SARS-Cov-2 specific antibodies in serum may indicate a lower risk of shedding infectious SARS-CoV-2 by hospitalized COVID-19 patients.