Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1486: 257-272, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27844431

RESUMEN

Optical manipulation techniques provide researchers the powerful ability to directly move, probe and interrogate molecular complexes. Quadruple optical trapping is an emerging method for optical manipulation and force spectroscopy that has found its primary use in studying dual DNA interactions, but is certainly not limited to DNA investigations. The key benefit of quadruple optical trapping is that two molecular strands can be manipulated independently and simultaneously. The molecular geometries of the strands can thus be controlled and their interactions can be quantified by force measurements. Accurate control of molecular geometry is of critical importance for the analysis of, for example, protein-mediated DNA-bridging, which plays an important role in DNA compaction. Here, we describe the design of a dedicated and robust quadruple optical trapping-instrument. This instrument can be switched straightforwardly to a high-resolution dual trap and it is integrated with microfluidics and single-molecule fluorescence microscopy, making it a highly versatile tool for correlative single-molecule analysis of a wide range of biomolecular systems.


Asunto(s)
ADN/química , Pinzas Ópticas , Imagen Individual de Molécula/métodos , Análisis Espectral/métodos , Calibración , Microfluídica/métodos , Microscopía Fluorescente/métodos
2.
Elife ; 52016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27644113

RESUMEN

We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/fisiología , Locomoción , Algoritmos , Animales , Simulación por Computador , Modelos Biológicos
3.
Phys Rev Lett ; 116(25): 258102, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391755

RESUMEN

To understand DNA elasticity at high forces (F>30 pN), its helical nature must be taken into account, as a coupling between twist and stretch. The prevailing model, the wormlike chain, was previously extended to include this twist-stretch coupling. Motivated by DNA's charged nature, and the known effects of ionic charges on its elasticity, we set out to systematically measure the impact of buffer ionic conditions on twist-stretch coupling. After developing a robust fitting approach, we show, using our new data set, that DNA's helical twist is stabilized at high concentrations of the magnesium divalent cation. DNA's persistence length and stretch modulus are, on the other hand, relatively insensitive to the applied range of ionic strengths.


Asunto(s)
ADN/química , Magnesio/química , Elasticidad , Conformación de Ácido Nucleico , Concentración Osmolar
4.
Chemphyschem ; 15(4): 727-33, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24470208

RESUMEN

Fluorescence microscopy in conjunction with optical tweezers is well suited to the study of protein mobility on DNA. Here, we evaluate the benefits and drawbacks of super-resolution and conventional imaging techniques for the analysis of one-dimensional (1D) protein diffusion as commonly observed for DNA-binding proteins. In particular, we demonstrate the visualization of DNA-bound proteins using wide-field, confocal, and stimulated emission depletion (STED) microscopy. We review the suitability of these techniques to conditions of high protein density, and quantify their performance in terms of spatial and temporal resolution. Tracking proteins on DNA forces one to make a choice between localization precision on the one hand, and the number and rate of localizations on the other, by altering imaging modality, excitation intensity, and acquisition rate. Using simulated diffusion data, we quantify the effect of these imaging conditions on the accuracy of 1D diffusion analysis. In addition, we consider the case of diffusion confined between local roadblocks, a case particularly relevant for proteins bound to DNA. Together these results provide guidelines that can assist in judiciously optimizing the experimental conditions required for the analysis of protein mobility on DNA and other 1D systems.


Asunto(s)
ADN/química , Pinzas Ópticas , Proteínas/análisis , Microscopía Fluorescente , Fenómenos Ópticos
5.
Nat Methods ; 10(9): 910-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23934077

RESUMEN

Dense coverage of DNA by proteins is a ubiquitous feature of cellular processes such as DNA organization, replication and repair. We present a single-molecule approach capable of visualizing individual DNA-binding proteins on densely covered DNA and in the presence of high protein concentrations. Our approach combines optical tweezers with multicolor confocal and stimulated emission depletion (STED) fluorescence microscopy. Proteins on DNA are visualized at a resolution of 50 nm, a sixfold resolution improvement over that of confocal microscopy. High temporal resolution (<50 ms) is ensured by fast one-dimensional beam scanning. Individual trajectories of proteins translocating on DNA can thus be distinguished and tracked with high precision. We demonstrate our multimodal approach by visualizing the assembly of dense nucleoprotein filaments with unprecedented spatial resolution in real time. Experimental access to the force-dependent kinetics and motility of DNA-associating proteins at biologically relevant protein densities is essential for linking idealized in vitro experiments with the in vivo situation.


Asunto(s)
Proteínas de Unión al ADN/análisis , ADN/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Pinzas Ópticas , ADN/análisis , Proteínas de Unión al ADN/metabolismo , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal/métodos , Nanotecnología/métodos , Nucleoproteínas/análisis , Nucleoproteínas/metabolismo
6.
Nat Commun ; 3: 1013, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22910359

RESUMEN

Mitochondria organize their genome in protein-DNA complexes called nucleoids. The mitochondrial transcription factor A (TFAM), a protein that regulates mitochondrial transcription, is abundant in these nucleoids. TFAM is believed to be essential for mitochondrial DNA compaction, yet the exact mechanism has not been resolved. Here we use a combination of single-molecule manipulation and fluorescence microscopy to show the nonspecific DNA-binding dynamics and compaction by TFAM. We observe that single TFAM proteins diffuse extensively over DNA (sliding) and, by collisions, form patches on DNA in a cooperative manner. Moreover, we demonstrate that TFAM induces compaction by changing the flexibility of the DNA, which can be explained by local denaturation of the DNA (melting). Both sliding of TFAM and DNA melting are also necessary characteristics for effective, specific transcription regulation by TFAM. This apparent connection between transcription and DNA organization clarifies how TFAM can accomplish two complementary roles in the mitochondrial nucleoid at the same time.


Asunto(s)
ADN Mitocondrial/química , Proteínas de Unión al ADN/química , Proteínas Mitocondriales/química , Factores de Transcripción/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Desnaturalización de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...