RESUMEN
The diversity of physiological roles of the endocannabinoid system has turned it into an attractive yet elusive therapeutic target. However, chemical probes with various functionalities could pave the way for a better understanding of the endocannabinoid system at the cellular level. Notably, inverse agonists of CB2R - a key receptor of the endocannabinoid system - lagged behind despite the evidence regarding the therapeutic potential of its antagonism. Herein, we report a matched fluorescent probe pair based on a common chemotype to address and visualize both the active and inactive states of CB2R, selectively. Alongside extensive cross-validation by flow cytometry, time-lapse confocal microscopy, and super-resolution microscopy, we successfully visualize the intracellular localization of CB2R pools in live cells. The synthetic simplicity, together with the high CB2R-selectivity and specificity of our probes, turns them into valuable tools in chemical biology and drug development that can benefit the clinical translatability of CB2R-based drugs.
RESUMEN
'openFrame' is a modular, low-cost, open-hardware microscopy platform that can be configured or adapted to most light microscopy techniques and is easily upgradeable or expandable to multiple modalities. The ability to freely mix and interchange both open-source and proprietary hardware components or software enables low-cost, yet research-grade instruments to be assembled and maintained. It also enables rapid prototyping of advanced or novel microscope systems. For long-term time-lapse image data acquisition, slide-scanning or high content analysis, we have developed a novel optical autofocus incorporating orthogonal cylindrical optics to provide robust single-shot closed-loop focus lock, which we have demonstrated to accommodate defocus up to ±37 µm with <200 nm accuracy, and a two-step autofocus mode which we have shown can operate with defocus up to ±68 µm. We have used this to implement automated single molecule localisation microscopy (SMLM) in a relatively low-cost openFrame-based instrument using multimode diode lasers for excitation and cooled CMOS cameras.
RESUMEN
Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push-pull system.