Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946555

RESUMEN

Difficulties related to storage and transport of currently available live oral rotavirus vaccines can have detrimental consequences on the efficacy of the vaccines. Thus, there is a great need for thermostable vaccines that can eliminate the necessity for cold chain storage or reconstitution before administration. In this study, we developed a dissolvable oral polymeric film comprised of a live attenuated thermostable tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV) powder and antacid (CaCO3). Immunogenicity and protective efficacy of the vaccine after buccal delivery was evaluated in the gnotobiotic pig model of human rotavirus (HRV) infection and diarrhea. Two doses of the vaccine were highly immunogenic and conferred strong protection against virus shedding and diarrhea upon challenge with a high dose of a virulent G1 HRV in gnotobiotic pigs. Those pigs vaccinated with the preserved film vaccine had significantly delayed onset of diarrhea; reduced duration and area under the curve of diarrhea; delayed onset of fecal virus shedding; and reduced duration and peak of fecal virus shedding titers compared to pigs in both the placebo and the reconstituted liquid oral RRV-TV vaccine groups. Associated with the strong protection, high titers of serum virus neutralization antibodies against each of the four RRV-TV mono-reassortants and G1 HRV-specific serum IgA and IgG antibodies, as well as intestinal IgA antibodies, were induced by the preserved film vaccine. These results demonstrated the effectiveness of our thermostable buccal film rotavirus vaccine and warrant further investigation into the promise of the novel technology in addressing drawbacks of the current live oral HRV vaccines.

2.
NPJ Vaccines ; 6(1): 59, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883559

RESUMEN

Influenza viruses cause annual seasonal epidemics and sporadic pandemics; vaccination is the most effective countermeasure. Intranasal live attenuated influenza vaccines (LAIVs) are needle-free, mimic the natural route of infection, and elicit robust immunity. However, some LAIVs require reconstitution and cold-chain requirements restrict storage and distribution of all influenza vaccines. We generated a dry-powder, thermostable LAIV (T-LAIV) using Preservation by Vaporization technology and assessed the stability, immunogenicity, and efficacy of T-LAIV alone or combined with delta inulin adjuvant (Advax™) in ferrets. Stability assays demonstrated minimal loss of T-LAIV titer when stored at 25 °C for 1 year. Vaccination of ferrets with T-LAIV alone or with delta inulin adjuvant elicited mucosal antibody and robust serum HI responses in ferrets, and was protective against homologous challenge. These results suggest that the Preservation by Vaporization-generated dry-powder vaccines could be distributed without refrigeration and administered without reconstitution or injection. Given these significant advantages for vaccine distribution and delivery, further research is warranted.

3.
J Infect Dis ; 220(9): 1521-1528, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31374568

RESUMEN

BACKGROUND: Ebola virus (EBOV) is a highly lethal member of the Filoviridae family associated with human hemorrhagic disease. Despite being a sporadic disease, it caused a large outbreak in 2014-2016 in West Africa and another outbreak recently in the Democratic Republic of Congo. Several vaccine candidates are currently in preclinical and clinical studies but none are stable without cold chain storage. METHODS: We used preservation by vaporization (PBV), a novel processing technology to heat-stabilize FiloRab1 (inactivated rabies-based Ebola vaccine), a candidate Ebola vaccine, and stored the vials at temperatures ranging from 4°C to 50°C for 10 days to 12 months. We immunized Syrian hamsters with the best long-term stable FiloRab1 PBV vaccines and challenged them with rabies virus (RABV). RESULTS: Syrian hamsters immunized with FiloRab1 PBV-processed vaccines stored at temperatures of 4°C and 37°C for 6 months, and at 50°C for 2 weeks, seroconverted against both RABV-G and EBOV-GP. Notably, all of the FiloRab1 PBV vaccines proved to be 100% effective in a RABV challenge model. CONCLUSIONS: We successfully demonstrated that the FiloRab1 PBV vaccines are stable and efficacious for up to 6 months when stored at temperatures ranging from 4°C to 37°C and for up to 2 weeks at 50°C.


Asunto(s)
Estabilidad de Medicamentos , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/efectos de la radiación , Fiebre Hemorrágica Ebola/prevención & control , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/efectos de la radiación , Rabia/prevención & control , Animales , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/genética , Femenino , Calor , Mesocricetus , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/genética , Temperatura , Resultado del Tratamiento , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/efectos de la radiación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/efectos de la radiación , Volatilización
4.
Am J Vet Res ; 78(6): 752-756, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28541146

RESUMEN

OBJECTIVE To assess the immunogenicity of thermostable live-attenuated rabies virus (RABV) preserved by vaporization (PBV) and delivered to the duodenal mucosa of a wildlife species targeted for an oral vaccination program. ANIMALS 8 gray foxes (Urocyon cinereoargenteus). PROCEDURES Endoscopy was used to place RABV PBV (n = 3 foxes), alginate-encapsulated RABV PBV (3 foxes), or nonpreserved RABV (2 foxes) vaccine into the duodenum of foxes. Blood samples were collected weekly to monitor the immune response. Saliva samples were collected weekly and tested for virus shedding by use of a conventional reverse-transcriptase PCR assay. Foxes were euthanized 28 days after vaccine administration, and relevant tissues were collected and tested for presence of RABV. RESULTS 2 of 3 foxes that received RABV PBV and 1 of 2 foxes that received nonpreserved RABV seroconverted by day 28. None of the 3 foxes receiving alginate-encapsulated RABV PBV seroconverted. No RABV RNA was detected in saliva at any of the time points, and RABV antigen or RNA was not detected in any of the tissues obtained on day 28. None of the foxes displayed any clinical signs of rabies. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study indicated that a live-attenuated RABV vaccine delivered to the duodenal mucosa can induce an immune response in gray foxes. A safe, potent, thermostable RABV vaccine that could be delivered orally to wildlife or domestic animals would enhance current rabies control and prevention efforts.


Asunto(s)
Duodeno , Zorros , Inmunogenicidad Vacunal , Vacunas Antirrábicas/inmunología , Administración Oral , Animales , Animales Salvajes , Antígenos Virales , Duodenoscopía/veterinaria , Duodeno/inmunología , Femenino , Mucosa Intestinal/inmunología , Masculino , Vacunas Antirrábicas/administración & dosificación , Vacunas Atenuadas/inmunología , Volatilización
5.
Vaccine ; 33(19): 2203-2206, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25812841

RESUMEN

A rabies vaccine that is thermostable over a range of ambient environmental temperatures would be highly advantageous, especially for tropical regions with challenging cold-chain storage where canine rabies remains enzootic resulting in preventable human mortality. Live attenuated rabies virus (RABV) strain ERAG333 (R333E) was preserved by vaporization (PBV) in a dry, stable foam. RABV stabilized using this process remains viable for at least 23 months at 22°C, 15 months at 37°C, and 3h at 80°C. An antigen capture assay revealed RABV PBV inactivated by irradiation contained similar levels of antigen as a commercial vaccine. Viability and antigen capture testing confirmed that the PBV process stabilized RABV with no significant loss in titer or antigen content. Live attenuated and inactivated RABV PBV both effectively induced RABV neutralizing antibodies and protected mice from peripheral RABV challenge. These results demonstrate that PBV is an efficient method for RABV stabilization.


Asunto(s)
Vacunas Antirrábicas/inmunología , Volatilización , Animales , Estabilidad de Medicamentos , Femenino , Humanos , Ratones , Viabilidad Microbiana , Virus de la Rabia/fisiología , Temperatura , Factores de Tiempo , Vacunas Atenuadas/inmunología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...