Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Nat Commun ; 15(1): 6152, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034312

RESUMEN

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.


Asunto(s)
Glutamato-Cisteína Ligasa , Glutatión , Hígado , Factor 2 Relacionado con NF-E2 , Triglicéridos , Animales , Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Hígado/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Ratones , Triglicéridos/metabolismo , Estrés Oxidativo , Masculino , Metabolismo de los Lípidos , Ratones Noqueados , Ratones Endogámicos C57BL , Oxidación-Reducción , Lipogénesis/genética
2.
J Clin Invest ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042477

RESUMEN

Delayed-type drug hypersensitivity reactions are major causes of morbidity and mortality. The origin, phenotype and function of pathogenic T cells across the spectrum of severity requires investigation. We leveraged recent technical advancements to study skin-resident memory T cells (TRM) versus recruited T cell subsets in the pathogenesis of severe systemic forms of disease, SJS/TEN and DRESS, and skin-limited disease, morbilliform drug eruption (MDE). Microscopy, bulk transcriptional profiling and scRNAseq + CITEseq + TCRseq supported in SJS/TEN clonal expansion and recruitment of cytotoxic CD8+ T cells from circulation into skin, along with expanded and non-expanded cytotoxic CD8+ skin TRM. Comparatively, MDE displayed a cytotoxic T cell profile in skin without appreciable expansion and recruitment of cytotoxic CD8+ T cells from circulation, implicating TRM as potential protagonists in skin-limited disease. Mechanistic interrogation in patients unable to recruit T cells from circulation into skin and in a parallel mouse model supported that skin TRM were sufficient to mediate MDE. Concomitantly, SJS/TEN displayed a reduced regulatory T cell (Treg) signature compared to MDE. DRESS demonstrated recruitment of cytotoxic CD8+ T cells into skin like SJS/TEN, yet a pro-Treg signature like MDE. These findings have important implications for fundamental skin immunology and clinical care.

3.
Nature ; 630(8016): 360-367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778109

RESUMEN

Implanted biomaterials and devices face compromised functionality and efficacy in the long term owing to foreign body reactions and subsequent formation of fibrous capsules at the implant-tissue interfaces1-4. Here we demonstrate that an adhesive implant-tissue interface can mitigate fibrous capsule formation in diverse animal models, including rats, mice, humanized mice and pigs, by reducing the level of infiltration of inflammatory cells into the adhesive implant-tissue interface compared to the non-adhesive implant-tissue interface. Histological analysis shows that the adhesive implant-tissue interface does not form observable fibrous capsules on diverse organs, including the abdominal wall, colon, stomach, lung and heart, over 12 weeks in vivo. In vitro protein adsorption, multiplex Luminex assays, quantitative PCR, immunofluorescence analysis and RNA sequencing are additionally carried out to validate the hypothesis. We further demonstrate long-term bidirectional electrical communication enabled by implantable electrodes with an adhesive interface over 12 weeks in a rat model in vivo. These findings may offer a promising strategy for long-term anti-fibrotic implant-tissue interfaces.


Asunto(s)
Materiales Biocompatibles , Fibrosis , Reacción a Cuerpo Extraño , Prótesis e Implantes , Adhesivos Tisulares , Animales , Femenino , Humanos , Masculino , Ratones , Ratas , Pared Abdominal , Adsorción , Materiales Biocompatibles/química , Colon , Electrodos Implantados , Fibrosis/patología , Fibrosis/prevención & control , Reacción a Cuerpo Extraño/prevención & control , Reacción a Cuerpo Extraño/patología , Corazón , Pulmón , Ratones Endogámicos C57BL , Especificidad de Órganos , Reacción en Cadena de la Polimerasa , Ratas Sprague-Dawley , Estómago , Porcinos , Factores de Tiempo , Adhesivos Tisulares/química , Técnica del Anticuerpo Fluorescente , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
5.
Front Nutr ; 10: 1286792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125727

RESUMEN

Objective: Epidemiological studies suggest that consumption of fruits and vegetables (FV) is negatively associated with the incidence of certain cancers and mortality. However, a causal relationship has not been demonstrated. Thus, we investigated the effect of life-long consumption of high level of FV on median lifespan, key biological functions, and pathologies in mice fed low-fat (LF) or high-fat (HF) diets and the underlying mechanisms. Methods: Using a 2 × 2 factorial design, 5 weeks-old male C57BL/6J mice were randomly assigned to one of four groups (n = 60/group): LF (LF-C, 10% kcal fat), HF (HF-C, 45% kcal fat) or each supplemented with 15% (w/w) of a unique FV mixture (LF + FV and HF + FV, respectively). Mice were euthanized when one group reached 50% mortality. Body weight and composition, tumor incidence, and death were monitored. Blood levels of lipids and pro-inflammatory cytokines were assessed. Results: After 21 months of feeding, HF-C group reached 50% mortality, at which time mice in all groups were terminated. HF-C had higher mortality (50.0%) compared to the LF-C group (18.3%, p = 0.0008). Notably, HF-FV had lower mortality (23.3%) compared to HF-C group (p = 0.008); there was no significant difference in mortality between HF-FV and LF-C groups. Tumors were found in all groups, and were predominantly present in the liver, followed by those of lung, intestine, and seminal vesicle. Tumor incidence in the HF-C group (73.3%) was higher than that in LF-C group (30.0%, p < 0.0001). HF + FV group had 23.3% lower tumor incidence compared to the HF-C group (p = 0.014). No significant difference in tumor incidence between the LF-C and LF + FV groups was observed. Long-term FV supplementation reduced systemic inflammation and blood lipids. Conclusion: We provide the first causal evidence that life-long intake of a diet, containing a high level and large variety of FV, decreases tumor incidence and extends median lifespan in mice fed a western-style high-fat diet. These effects of FV are at least in part due to reduced blood levels of pro-inflammatory cytokines and improved dyslipidemia.

6.
PLoS Biol ; 21(11): e3002353, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943878

RESUMEN

Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.


Asunto(s)
Toxinas Bacterianas , Neoplasias de la Mama , Clostridioides difficile , Neoplasias Mamarias Animales , Humanos , Animales , Ratones , Femenino , Vía de Señalización Wnt , Neoplasias de la Mama/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Cisplatino
7.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992688

RESUMEN

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Antígeno B7-H1/genética , Aurora Quinasa A/genética , Aurora Quinasa A/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Mitosis , Interferones/genética
8.
Sci Transl Med ; 15(717): eade1844, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820007

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although cSCC contributes to substantial morbidity and mortality in high-risk individuals, deployment of otherwise effective chemoprevention of cSCC is limited by toxicities. Our systematic computational drug repurposing screen predicted that selumetinib, a MAPK (mitogen-activated protein kinase) kinase inhibitor (MEKi), would reverse transcriptional signatures associated with cSCC development, consistent with our genomic analysis implicating MEK as a chemoprevention target. Although systemic MEKi suppresses the formation of cSCC in mice, systemic MEKi can cause severe adverse effects. Here, we report the development of a metabolically labile MEKi, NFX-179, designed to potently and selectively suppress the MAPK pathway in the skin before rapid metabolism in the systemic circulation. NFX-179 was identified on the basis of its biochemical and cellular potency, selectivity, and rapid metabolism upon systemic absorption. In our ultraviolet-induced cSCC mouse model, topical application of NFX-179 gel reduced the formation of new cSCCs by an average of 60% at doses of 0.1% and greater at 28 days. We further confirmed the localized nature of these effects in an additional split-mouse randomized controlled study where suppression of cSCC was observed only in drug-treated areas. No toxicities were observed. NFX-179 inhibits the growth of human SCC cell lines in a dose-dependent manner, and topical NFX-179 application penetrates human skin and inhibits MAPK signaling in human cSCC explants. Together, our data provide a compelling rationale for using topical MEK inhibition through the application of NFX-179 gel as an effective strategy for cSCC chemoprevention.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Proliferación Celular , Quimioprevención , Quinasas de Proteína Quinasa Activadas por Mitógenos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/genética
9.
Nat Genet ; 55(10): 1686-1695, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37709863

RESUMEN

DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Animales , Ratones , Neoplasias Colorrectales/genética , Antígenos de Neoplasias/genética , Mutación , Reparación de la Incompatibilidad de ADN/genética , Biomarcadores de Tumor/genética
10.
Nat Cell Biol ; 25(9): 1346-1358, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591951

RESUMEN

Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Histona Demetilasas/genética , Cromatina , Epigenómica , Neoplasias Pulmonares/genética
11.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798186

RESUMEN

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are reported to be highest in liver tissue, which is also a hub for lipid production. While the loss of GSH did not cause liver failure, it decreased lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we found that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.

12.
J Biol Chem ; 299(3): 103022, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805337

RESUMEN

The endoplasmic reticulum (ER)-resident protein fat storage-inducing transmembrane protein 2 (FIT2) catalyzes acyl-CoA cleavage in vitro and is required for ER homeostasis and normal lipid storage in cells. The gene encoding FIT2 is essential for the viability of mice and worms. Whether FIT2 acts as an acyl-CoA diphosphatase in vivo and how this activity affects the liver, where the protein was discovered, are unknown. Here, we report that hepatocyte-specific Fitm2 knockout (FIT2-LKO) mice fed a chow diet exhibited elevated acyl-CoA levels, ER stress, and signs of liver injury. These mice also had more triglycerides in their livers than control littermates due, in part, to impaired secretion of triglyceride-rich lipoproteins and reduced capacity for fatty acid oxidation. We found that challenging FIT2-LKO mice with a high-fat diet worsened hepatic ER stress and liver injury but unexpectedly reversed the steatosis phenotype, similar to what is observed in FIT2-deficient cells loaded with fatty acids. Our findings support the model that FIT2 acts as an acyl-CoA diphosphatase in vivo and is crucial for normal hepatocyte function and ER homeostasis in the murine liver.


Asunto(s)
Hígado Graso , Hígado , Animales , Ratones , Hígado/metabolismo , Triglicéridos/metabolismo , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Retículo Endoplásmico/metabolismo , Ratones Noqueados , Homeostasis , Proteínas de la Membrana/metabolismo
13.
Front Bioeng Biotechnol ; 10: 1010276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36394042

RESUMEN

Human movement is accomplished through muscle contraction, yet there does not exist a portable system capable of monitoring muscle length changes in real time. To address this limitation, we previously introduced magnetomicrometry, a minimally-invasive tracking technique comprising two implanted magnetic beads in muscle and a magnetic field sensor array positioned on the body's surface adjacent the implanted beads. The implant system comprises a pair of spherical magnetic beads, each with a first coating of nickel-copper-nickel and an outer coating of Parylene C. In parallel work, we demonstrate submillimeter accuracy of magnetic bead tracking for muscle contractions in an untethered freely-roaming avian model. Here, we address the clinical viability of magnetomicrometry. Using a specialized device to insert magnetic beads into muscle in avian and lagomorph models, we collect data to assess gait metrics, bead migration, and bead biocompatibility. For these animal models, we find no gait differences post-versus pre-implantation, and bead migration towards one another within muscle does not occur for initial bead separation distances greater than 3 cm. Further, using extensive biocompatibility testing, the implants are shown to be non-irritant, non-cytotoxic, non-allergenic, and non-irritating. Our cumulative results lend support for the viability of these magnetic bead implants for implantation in human muscle. We thus anticipate their imminent use in human-machine interfaces, such as in control of prostheses and exoskeletons and in closed-loop neuroprosthetics to aid recovery from neurological disorders.

15.
Cell Rep ; 39(2): 110662, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417699

RESUMEN

Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo.


Asunto(s)
Organoides , Ataxias Espinocerebelosas , Animales , Diferenciación Celular , Células Epiteliales , Pulmón , Ratones , Células Madre
16.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159108

RESUMEN

Ovarian and uterine cancers are the most prevalent types of gynecological malignancies originating from mesothelial and/or Müllerian-derived epithelial cells. Recent genomic studies have identified common mutations in them that affect signaling pathways such as p53, PTEN/PI3K, RAS, and WNT pathways. However, how these mutations and their corresponding deregulated pathways affect gynecological cancer development from their cells-of-origin remains largely elusive. To address this, we performed the intrabursal injection of Cre-expressing adenovirus under the control of Krt8 promoter (Ad-K8-Cre) to mice carrying combinations of various conditional alleles for cancer genes. We found that Ad-K8-Cre specifically targeted mesothelial cells, including ovarian surface epithelial (OSE) cells (mainly the LGR5+ subset of OSE cells) and mesothelial cells lining the fallopian tube (FT) serosa; the injected Ad-K8-Cre also targeted Müllerian-derived epithelial cells, including FT epithelial cells and uterine endometrial epithelial cells. The loss of p53 may preferentially affect Müllerian-derived epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies (upon KRAS-activation or APC-loss) or adenoma on the FT surface (upon DICER-loss). Overall, our data suggest that different Krt8+ mesothelial and epithelial cell types in the female reproductive system may have different sensitivities toward oncogenic mutations and, as a result, oncogenic events may dominantly determine the locations and types of the gynecological malignancies developed from them.

17.
Nat Commun ; 13(1): 256, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017504

RESUMEN

The GATA4 transcription factor acts as a master regulator of development of multiple tissues. GATA4 also acts in a distinct capacity to control a stress-inducible pro-inflammatory secretory program that is associated with senescence, a potent tumor suppression mechanism, but also operates in non-senescent contexts such as tumorigenesis. This secretory pathway is composed of chemokines, cytokines, growth factors, and proteases. Since GATA4 is deleted or epigenetically silenced in cancer, here we examine the role of GATA4 in tumorigenesis in mouse models through both loss-of-function and overexpression experiments. We find that GATA4 promotes non-cell autonomous tumor suppression in multiple model systems. Mechanistically, we show that Gata4-dependent tumor suppression requires cytotoxic CD8 T cells and partially requires the secreted chemokine CCL2. Analysis of transcriptome data in human tumors reveals reduced lymphocyte infiltration in GATA4-deficient tumors, consistent with our murine data. Notably, activation of the GATA4-dependent secretory program combined with an anti-PD-1 antibody robustly abrogates tumor growth in vivo.


Asunto(s)
Transporte Biológico/fisiología , Factor de Transcripción GATA4/metabolismo , Neoplasias/metabolismo , Linfocitos T Citotóxicos/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Quimiocina CCL2/metabolismo , Factor de Transcripción GATA4/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , Humanos , Evasión Inmune , Pulmón/patología , Melanoma , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Transcriptoma
18.
Cancer Discov ; 12(2): 562-585, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34561242

RESUMEN

SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes club cell secretory protein-positive cells within the lung in a cell type-dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex via Smarca4 acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution. SIGNIFICANCE: We demonstrate cell-type specificity in the tumor-suppressive functions of SMARCA4 in the lung, pointing toward a critical role of the cell-of-origin in driving SWI/SNF-mutant lung adenocarcinoma. We further show the direct effects of SMARCA4 loss on SWI/SNF function and chromatin regulation that cause aggressive malignancy during lung cancer evolution.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Transformación Celular Neoplásica , ADN Helicasas/genética , Neoplasias Pulmonares/genética , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adenocarcinoma del Pulmón/secundario , Animales , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/patología , Ratones
19.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607954

RESUMEN

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Asunto(s)
Proteína BRCA1/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Pérdida de Heterocigocidad/genética , Proteína p53 Supresora de Tumor/genética , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Modelos Animales de Enfermedad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/inducido químicamente , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Pérdida de Heterocigocidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
20.
J Nutr ; 151(12): 3678-3688, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34590119

RESUMEN

BACKGROUND: Obesity increases the colorectal cancer risk, in part by elevating colonic proinflammatory cytokines. Curcumin (CUR) and supplemental vitamin B-6 each suppress colonic inflammation. OBJECTIVES: We examined whether the combination of CUR and vitamin B-6 amplifies each supplement's effects and thereby suppress obesity-promoted tumorigenesis. METHODS: Male Friend Virus B (FVB) mice (4-week-old; n = 110) received 6 weekly injections of azoxymethane beginning 1 week after arrival. Thereafter, they were randomized to receive a low-fat diet (10% energy from fat), a high-fat diet (HFD; 60% energy from fat), a HFD containing 0.2% CUR, a HFD containing supplemental vitamin B-6 (24 mg pyridoxine HCl/kg), or a HFD containing both CUR and supplemental vitamin B-6 (C + B) for 15 weeks. Colonic inflammation, assessed by fecal calprotectin, and tumor metrics were the primary endpoints. The anti-inflammatory efficacy of the combination was also determined in human colonic organoids. RESULTS: HFD-induced obesity produced a 2.6-fold increase in plasma IL-6 (P < 0.02), a 1.9-fold increase in fecal calprotectin (P < 0.05), and a 2.2-fold increase in tumor multiplicity (P < 0.05). Compared to the HFD group, the C + B combination, but not the individual agents, decreased fecal calprotectin (66%; P < 0.01) and reduced tumor multiplicity and the total tumor burden by 60%-80% (P < 0.03) in an additive fashion. The combination of C + B also significantly downregulated colonic phosphatidylinositol-4,5-bisphosphate 3-kinase, Wnt, and NF-κB signaling by 31%-47% (P < 0.05), effects largely absent with the single agents. Observations that may explain how the 2 agents work additively include a 2.8-fold increased colonic concentration of 3-hydroxyanthranillic acid (P < 0.05) and a 1.3-fold higher colonic concentration of the active coenzymatic form of vitamin B-6 (P < 0.05). In human colonic organoids, micromolar concentrations of CUR, vitamin B-6, and their combination suppressed secreted proinflammatory cytokines by 41%-93% (P < 0.03), demonstrating relevance to humans. CONCLUSIONS: In this mouse model, C + B is superior to either agent alone in preventing obesity-promoted colorectal carcinogenesis. Augmented suppression of procancerous signaling pathways may be the means by which this augmentation occurs.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Animales , Masculino , Ratones , Carcinogénesis , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/prevención & control , Curcumina/farmacología , Dieta Alta en Grasa , Suplementos Dietéticos , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Piridoxina , Vitamina B 6/farmacología , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...