Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19482, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945613

RESUMEN

Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.S. east coast, an area of intense human activity including fisheries and naval operations, and potentially energy and mineral extraction. At one site, CWC mounds are arranged in lines that total over 150 km in length, making this one of the largest reef complexes discovered in the deep ocean. This site experiences rapid and extreme shifts in temperature between 4.3 and 10.7 °C, and currents approaching 1 m s-1. Carbon is transported to depth by mesopelagic micronekton and nutrient cycling on the reef results in some of the highest nitrate concentrations recorded in the region. Predictive models reveal expanded areas of highly suitable habitat that currently remain unexplored. Multidisciplinary exploration of this new site has expanded understanding of the cold-water coral niche, improved our accounting of the ecosystem services of the reef habitat, and emphasizes the importance of properly managing these systems.


Asunto(s)
Antozoos , Ecosistema , Animales , Humanos , Arrecifes de Coral , Agua , Temperatura
2.
Proc Natl Acad Sci U S A ; 117(20): 11029-11037, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32354993

RESUMEN

Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.


Asunto(s)
Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Microbiota/fisiología , Agua de Mar/microbiología , Alcanos/metabolismo , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Biodiversidad , Sedimentos Geológicos/química , Golfo de México , Metagenoma , Metagenómica , Petróleo/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química
3.
Nat Commun ; 10(1): 1816, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000700

RESUMEN

The lack of microbial genomes and isolates from the deep seabed means that very little is known about the ecology of this vast habitat. Here, we investigate energy and carbon acquisition strategies of microbial communities from three deep seabed petroleum seeps (3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals that each sediment harbors diverse communities of chemoheterotrophs and chemolithotrophs. We recovered 82 metagenome-assembled genomes affiliated with 21 different archaeal and bacterial phyla. Multiple genomes encode enzymes for anaerobic oxidation of aliphatic and aromatic compounds, including those of candidate phyla Aerophobetes, Aminicenantes, TA06 and Bathyarchaeota. Microbial interactions are predicted to be driven by acetate and molecular hydrogen. These findings are supported by sediment geochemistry, metabolomics, and thermodynamic modelling. Overall, we infer that deep-sea sediments experiencing thermogenic hydrocarbon inputs harbor phylogenetically and functionally diverse communities potentially sustained through anaerobic hydrocarbon, acetate and hydrogen metabolism.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Microbiota/fisiología , Petróleo/metabolismo , Acetatos/metabolismo , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Sedimentos Geológicos/química , Hidrocarburos/metabolismo , Hidrógeno/metabolismo , Metagenoma , Metagenómica/métodos , México , Interacciones Microbianas/fisiología
4.
ISME J ; 12(8): 1895-1906, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29599524

RESUMEN

Dormant endospores of thermophilic bacteria (thermospores) can be detected in cold marine sediments following high-temperature incubation. Thermospores in the cold seabed may be explained by a dispersal history originating in deep biosphere oil reservoir habitats where upward migration of petroleum fluids at hydrocarbon seeps transports viable cells into the overlying ocean. We assessed this deep-to-shallow dispersal hypothesis through geochemical and microbiological analyses of 111 marine sediments from the deep water Eastern Gulf of Mexico. GC-MS and fluorescence confirmed the unambiguous presence of thermogenic hydrocarbons in 71 of these locations, indicating seepage from deeply sourced petroleum in the subsurface. Heating each sediment to 50 °C followed by 16S rRNA gene sequencing revealed several thermospores with a cosmopolitan distribution throughout the study area, as well as thermospores that were more geographically restricted. Among the thermospores having a more limited distribution, 12 OTUs from eight different lineages were repeatedly detected in sediments containing thermogenic hydrocarbons. A subset of these were significantly correlated with hydrocarbons (p < 0.05) and most closely related to Clostridiales previously detected in oil reservoirs from around the world. This provides evidence of bacteria in the ocean being dispersed out of oil reservoirs, and suggests that specific thermospores may be used as model organisms for studying warm-to-cold transmigration in the deep sea.


Asunto(s)
Sedimentos Geológicos/microbiología , Esporas Bacterianas/aislamiento & purificación , Temperatura , Golfo de México , Hidrocarburos/análisis , Petróleo
5.
Proc Natl Acad Sci U S A ; 111(32): 11744-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071200

RESUMEN

On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations.


Asunto(s)
Antozoos/efectos de los fármacos , Contaminación por Petróleo/efectos adversos , Contaminación Química del Agua/efectos adversos , Animales , Ecosistema , Monitoreo del Ambiente , Golfo de México
6.
Proc Natl Acad Sci U S A ; 109(50): 20303-8, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22454495

RESUMEN

To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.


Asunto(s)
Antozoos/efectos de los fármacos , Arrecifes de Coral , Contaminación por Petróleo/efectos adversos , Animales , Antozoos/clasificación , Antozoos/genética , Cromatografía de Gases , Sedimentos Geológicos/análisis , Golfo de México , Datos de Secuencia Molecular , Contaminación por Petróleo/análisis , Filogenia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Mol Plant Microbe Interact ; 24(11): 1310-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21848398

RESUMEN

Progress in understanding symbiotic determinants involved in the N(2)-fixing actinorhizal plant symbioses has been slow but steady. Problems persist with studying the bacterial contributions to the symbiosis using traditional microbiological techniques. However, recent years have seen the emergence of several genomes from Frankia sp. strains and the development of techniques for manipulating plant gene expression. Approaches to understanding the bacterial side of the symbiosis have employed a range of techniques that reveal the proteomes and transcriptomes from both cultured and symbiotic frankiae. The picture beginning to emerge provides some perspective on the heterogeneity of frankial populations in both conditions. In general, frankial populations in root nodules seem to maintain a rather robust metabolism that includes nitrogen fixation and substantial biosynthesis and energy-generating pathways, along with a modified ammonium assimilation program. To date, particular bacterial genes have not been implicated in root nodule formation but some hypotheses are emerging with regard to how the plant and microorganism manage to coexist. In particular, frankiae seem to present a nonpathogenic presence to the plant that may have the effect of minimizing some plant defense responses. Future studies using high-throughput approaches will likely clarify the range of bacterial responses to symbiosis that will need to be understood in light of the more rapidly advancing work on the plant host.


Asunto(s)
Frankia/fisiología , Genoma de Planta , Frankia/genética , Proteínas de Plantas/genética , Proteoma , ARN de Planta/genética , Transcriptoma
8.
PLoS One ; 5(8): e11967, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700528

RESUMEN

Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300 m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000 m, with the middle slope sites either grouped with those deeper than 2000 m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as "stepping stones" for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.


Asunto(s)
Frío , Ecosistema , Agua de Mar , Animales , Océano Atlántico , Biodiversidad , Clasificación , Guinea , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...