Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 250: 106905, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35598406

RESUMEN

Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...