Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Methods Mol Biol ; 2767: 63-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37402095

RESUMEN

Understanding the process of human embryo implantation is impeded by the inability to study this phenomenon in vivo, thus limiting opportunities to gain knowledge to in vitro modeling. Previous models have relied on monolayer co-cultures, which do not replicate the complexity of endometrial tissue. Here, we detail the establishment of three-dimensional endometrial assembloids, comprising gland-like epithelial organoids in a stromal matrix. Endometrial assembloids mimic endometrial tissue structure more faithfully and can be used to study human embryo-endometrial interactions. Co-cultures of human embryos and endometrial assembloids will enhance our fundamental understanding of these processes as well as allowing us to study the mechanisms of persistent reproductive failure.


Asunto(s)
Implantación del Embrión , Endometrio , Femenino , Humanos , Blastocisto , Trofoblastos , Técnicas de Cocultivo , Células del Estroma
2.
Cell Rep ; 42(12): 113525, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060448

RESUMEN

Estrogen-dependent proliferation followed by progesterone-dependent differentiation of the endometrium culminates in a short implantation window. We performed single-cell assay for transposase-accessible chromatin with sequencing on endometrial samples obtained across the menstrual cycle to investigate the regulation of temporal gene networks that control embryo implantation. We identify uniquely accessible chromatin regions in all major cellular constituents of the endometrium, delineate temporal patterns of coordinated chromatin remodeling in epithelial and stromal cells, and gain mechanistic insights into the emergence of a receptive state through integrated analysis of enriched transcription factor (TF) binding sites in dynamic chromatin regions, chromatin immunoprecipitation sequencing analyses, and gene expression data. We demonstrate that the implantation window coincides with pervasive cooption of transposable elements (TEs) into the regulatory chromatin landscape of decidualizing cells and expression of TE-derived transcripts in a spatially defined manner. Our data constitute a comprehensive map of the chromatin changes that control TF activities in a cycling endometrium at cellular resolution.


Asunto(s)
Ensamble y Desensamble de Cromatina , Endometrio , Femenino , Humanos , Endometrio/metabolismo , Implantación del Embrión/fisiología , Ciclo Menstrual/metabolismo , Cromatina/metabolismo , Células del Estroma/metabolismo
3.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37254877

RESUMEN

Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans. We also discuss the interactions between the embryo and the decidualising endometrium that regulate interstitial implantation and determine embryo fitness. Together, this Review highlights the precarious but adaptable nature of the implantation process.


Asunto(s)
Implantación del Embrión , Placenta , Embarazo , Humanos , Femenino , Endometrio/fisiología , Útero , Embrión de Mamíferos/fisiología
4.
iScience ; 26(4): 106339, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968081

RESUMEN

We tested the hypothesis that conserved placental mammal-specific microRNAs and their targets facilitate endometrial receptivity to implantation. Expression of miR-340-5p, -542-3p, and -671-5p was regulated by exposure of endometrial epithelial cells to progesterone (10 µg/ml) for 24 h coordinate with 1,713 of their predicted targets. Proteomic analysis of cells transfected with miRNA mimic/inhibitor (48 h: n = 3) revealed 1,745 proteins altered by miR-340-5p (mimic; 1,369, inhibitor; 376) of which 171 were predicted targets and P4-regulated. MiR-542-3p altered 2,353 (mimic; 1,378, inhibitor; 975) 100 which were mirDB predicted, including 46 P4-regulated. MiR-671-5p altered 1,744 proteins (mimic; 1,252, inhibitor; 492) 95 of which were predicted targets and 46 P4-regulated. All miRNAs were detected in luteal phase endometrial biopsies, irrespective of pregnancy outcomes. miR-340-5p expression increased in biopsies from individuals suffering previous and subsequent miscarriage compared to those with subsequent live birth. Dysfunction of these miRNAs and their targets contribute to endometrial-derived recurrent pregnancy loss.

5.
EBioMedicine ; 81: 104134, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35779492

RESUMEN

Upon embryo implantation, the uterine mucosa - the endometrium - transforms into a robust decidual matrix that accommodates the fetal placenta throughout pregnancy. This transition is driven by the differentiation of endometrial fibroblasts into specialised decidual cells. A synchronised influx of circulating natural killer (NK) cells and bone marrow-derived mesenchymal stem/progenitor cells (BM-MSC) is pivotal for decidual homeostasis and expansion in early pregnancy. We hypothesise that pathological signals interfering with the recruitment or activity of extrauterine cells at the maternal-fetal interface link miscarriage to subsequent adverse pregnancy outcomes, including further pregnancy losses and preterm labour. NK cells and BM-MSC are key homeostatic regulators in multiple tissues, pointing towards a shared aetiology between recurrent miscarriage and age-related disorders, including cardiometabolic disease. We propose the term 'miscarriage syndrome' to capture the health risks associated with miscarriage and discuss how this paradigm can inform clinical practice and accelerate the development of preventative strategies.


Asunto(s)
Aborto Habitual , Resultado del Embarazo , Aborto Habitual/etiología , Implantación del Embrión , Endometrio , Femenino , Humanos , Recién Nacido , Embarazo , Útero
6.
Cell Rep ; 39(9): 110889, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649353

RESUMEN

Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.


Asunto(s)
Proteínas Co-Represoras , Proteínas de Unión al ADN , Histonas , Proteínas de Neoplasias , Complejo Represivo Polycomb 2 , Factores de Transcripción , Diferenciación Celular/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo
7.
Semin Cell Dev Biol ; 131: 14-24, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35094946

RESUMEN

Compared to most mammals, human pregnancy is unusual in that it involves chromosomally diverse embryos, cyclical breakdown and regeneration of the uterine mucosa, and intimate integration of fetal and maternal cells at the uteroplacental interface. Not surprisingly, pregnancy often falters in early gestation. Whether these losses result in clinical miscarriages depends on the origins and impacts of chromosomal errors on fetal development and the ability of the decidualizing endometrium to engage in embryo biosensing and selection. Aneuploidy originating in oocytes during meiosis drives the age-related risk of miscarriage. By contrast, the frequency of endometrial cycles with an impaired decidual response may account for the stepwise increase in miscarriage rates with each pregnancy loss independently of maternal age. Additional physiological mechanisms operate in early gestation to ensure that most failing pregnancies are lost before vascular maternal-fetal connections are established by the end of the first trimester. Here, we summarise how investigations into the mechanisms that cause miscarriage led to new insights into the processes that govern maternal selection of human embryos in early gestation.


Asunto(s)
Aborto Habitual , Aborto Habitual/etiología , Aneuploidia , Animales , Embrión de Mamíferos , Endometrio , Femenino , Humanos , Mamíferos , Embarazo
8.
BMC Med ; 20(1): 38, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090453

RESUMEN

BACKGROUND: Emerging evidence supports an association between vaginal microbiota composition and risk of miscarriage; however, the underlying mechanisms are poorly understood. We aim to investigate the vaginal microbial composition and the local immune response in chromosomally normal and abnormal miscarriages and compare this to uncomplicated pregnancies delivering at term. METHODS: We used 16S rRNA gene based metataxonomics to interrogate the vaginal microbiota in a cohort of 167 women, 93 miscarriages (54 euploid and 39 aneuploid using molecular cytogenetics) and 74 women who delivered at term and correlate this with the aneuploidy status of the miscarriages. We also measured the concentrations of IL-2, IL-4, IL-6, IL-8, TNF-α, IFN-γ, IL-1ß, IL-18 and IL-10 in cervical vaginal fluid. RESULTS: We show that euploid miscarriage is associated with a significantly higher prevalence of Lactobacillus spp. deplete vaginal microbial communities compared to aneuploid miscarriage (P = 0.01). Integration of matched cervicovaginal fluid immune-profiles showed that Lactobacillus spp. depleted vaginal microbiota associated with pro-inflammatory cytokine levels most strongly in euploid miscarriage compared to viable term pregnancy (IL-1ß; P < 0.001, IL-8; P = 0.01, IL-6; P < 0.001). CONCLUSIONS: Our data suggest the vaginal microbiota plays an important aetiological role in euploid miscarriage and may represent a target to modify risk of pregnancy loss.


Asunto(s)
Aborto Espontáneo , Aborto Espontáneo/epidemiología , Aborto Espontáneo/genética , Disbiosis , Femenino , Humanos , Inflamación , Embarazo , ARN Ribosómico 16S/genética , Vagina
9.
Hum Reprod ; 37(4): 747-761, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092277

RESUMEN

STUDY QUESTION: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY: Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4-12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS: A computational procedure, named 'EndoTime', was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE: The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P < 0.005; CXCL14: P < 2.7e-6; DPP4: P < 3.7e-13). Pearson correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree of congruency between the two (P = 8.6e-10, R2 = 0.687). Estimated timings did not differ significantly between control subjects and patients with recurrent pregnancy loss or recurrent implantation failure (P > 0.05). LARGE SCALE DATA: The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION: Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS: Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. None of the authors have any competing interests. J.L. was funded by the Biotechnology and Biological Sciences Research Council (UK) through the Midlands Integrative Biology Training Partnership (MIBTP, BB/M01116X/1).


Asunto(s)
Aborto Habitual , Endometrio , Aborto Habitual/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Fase Luteínica/metabolismo , Embarazo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
10.
Mucosal Immunol ; 15(1): 120-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34552206

RESUMEN

Recurrent Pregnancy Loss (RPL) affects 2-4% of couples, and with increasing numbers of pregnancy losses the risk of miscarrying a euploid pregnancy is increased, suggesting RPL is a pathology distinct from sporadic miscarriage that is due largely to lethal embryonic aneuploidy. There are a number of conditions associated with RPL including unspecified "immune" pathologies; one of the strongest candidates for dysregulation remains T regulatory cells as depletion in the very early stages of pregnancy in mice leads to pregnancy loss. Human endometrial Treg and conventional CD4T cells were isolated during the peri-implantation period of the menstrual cycle in normal women. We identified an endometrial Treg transcriptomic signature and validated an enhanced regulatory phenotype compared to peripheral blood Treg. Parous women had an altered endometrial Treg transcriptome compared to nulliparity, indicating acquired immune memory of pregnancy within the Treg population, by comparison endometrial conventional CD4T cells were not altered. We compared primary and secondary RPL to nulliparous or parous controls respectively. Both RPL subgroups displayed differentially expressed Treg gene transcriptomes compared to controls. We found increased cell surface S1PR1 and decreased TIGIT protein expression by Treg in primary RPL, confirming the presence of altered Treg in the peri-implantation RPL endometrium.


Asunto(s)
Aborto Habitual/inmunología , Implantación del Embrión/fisiología , Endometrio/inmunología , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Movimiento Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica , Paridad , Fenotipo , Receptores Inmunológicos/genética , Receptores de Esfingosina-1-Fosfato/genética , Transcriptoma , Adulto Joven
11.
Biomolecules ; 11(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34827623

RESUMEN

Over the last thirty years, evidence has been accumulating that Hypertensive Disorders of Pregnancy (HDP) and, specifically, Preeclampsia (PE) produce not only long-term effects on the pregnant woman, but have also lasting consequences for the fetus. At the core of these consequences is the phenomenon known as defective deep placentation, being present in virtually every major obstetrical syndrome. The profound placental vascular lesions characteristic of this pathology can induce long-term adverse consequences for the pregnant woman's entire arterial system. In addition, placental growth restriction and function can, in turn, cause a decreased blood supply to the fetus, with long-lasting effects. Women with a history of HDP have an increased risk of Cardiovascular Diseases (CVD) compared with women with normal pregnancies. Specifically, these subjects are at a future higher risk of: Hypertension; Coronary artery disease; Heart failure; Peripheral vascular disease; Cerebrovascular accidents (Stroke); CVD-related mortality. Vascular pathology in pregnancy and CVD may share a common etiology and may have common risk factors, which are unmasked by the "stress" of pregnancy. It is also possible that the future occurrence of a CVD may be the consequence of endothelial dysfunction generated by pregnancy-induced hypertension that persists after delivery. Although biochemical and biophysical markers of PE abound, information on markers for a comparative evaluation in the various groups is still lacking. Long-term consequences for the fetus are an integral part of the theory of a fetal origin of a number of adult diseases, known as the Barker hypothesis. Indeed, intrauterine malnutrition and fetal growth restriction represent significant risk factors for the development of chronic hypertension, diabetes, stroke and death from coronary artery disease in adults. Other factors will also influence the development later in life of hypertension, coronary and myocardial disease; they include parental genetic disposition, epigenetic modifications, endothelial dysfunction, concurrent intrauterine exposures, and the lifestyle of the affected individual.


Asunto(s)
Preeclampsia , Femenino , Retardo del Crecimiento Fetal , Humanos , Placenta , Embarazo
12.
Elife ; 102021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34487490

RESUMEN

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.


At the beginning of a human pregnancy, the embryo implants into the uterus lining, known as the endometrium. At this point, the endometrium transforms into a new tissue that helps the placenta to form. Problems in this transformation process are linked to pregnancy disorders, many of which can lead to implantation failure (the embryo fails to invade the endometrium altogether) or recurrent miscarriages (the embryo implants successfully, but the interface between the placenta and the endometrium subsequently breaks down). Studying the implantation of human embryos directly is difficult due to ethical and technical barriers, and animals do not perfectly mimic the human process, making it challenging to determine the causes of pregnancy disorders. However, it is likely that a form of cellular arrest called senescence, in which cells stop dividing but remain metabolically active, plays a role. Indeed, excessive senescence in the cells that make up the endometrium is associated with recurrent miscarriage, while a lack of senescence is associated with implantation failure. To study this process, Rawlings et al. developed a new laboratory model of the human endometrium by assembling two of the main cell types found in the tissue into a three-dimensional structure. When treated with hormones, these 'assembloids' successfully mimic the activity of genes in the cells of the endometrium during implantation. Rawlings et al. then exposed the assembloids to the drug dasatinib, which targets and eliminates senescent cells. This experiment showed that assembloids become very robust and static when devoid of senescent cells. Rawlings et al. then studied the interaction between embryos and assembloids using time-lapse imaging. In the absence of dasatinib treatment, cells in the assembloid migrated towards the embryo as it expanded, a process required for implantation. However, when senescent cells were eliminated using dasatinib, this movement of cells towards the embryo stopped, and the embryo failed to expand, in a situation that mimicks implantation failure. The assembloid model of the endometrium may help scientists to study endometrial defects in the lab and test potential treatments. Further work will include other endometrial cell types in the assembloids, and could help increase the reliability of the model. However, any drug treatments identified using this model will need further research into their safety and effectiveness before they can be offered to patients.


Asunto(s)
Senescencia Celular , Implantación del Embrión/fisiología , Endometrio/citología , Células del Estroma/citología , Técnicas de Cocultivo , Decidua/fisiología , Femenino , Humanos , Organoides , Embarazo
13.
Front Cell Dev Biol ; 9: 709902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434932

RESUMEN

Embryo implantation is a complex and tightly regulated process. In humans, uterine luminal epithelium functions as a biosensor gauging the embryo quality and transmitting this information to the underlying endometrial stromal cells. This quality control ensures that only high quality embryos are implanted, while aberrant ones are rejected. The mechanisms of the embryo-uterine mucosa crosstalk remain incompletely understood. Trypsin, a serine protease secreted by the blastocyst, has been implicated in the cross-signaling. Here we address the mechanisms by which trypsin triggers the intracellular calcium signaling in uterine epithelium. We found that protease-activated G-protein coupled receptors are the main mechanism mediating the effects of trypsin in human uterine epithelium. In addition, trypsin activates the epithelial sodium channels thus increasing the intracellular Na+ concentration and promoting Ca2+ entry on the reverse mode of the sodium/calcium exchanger.

14.
Lancet ; 397(10285): 1658-1667, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915094

RESUMEN

Miscarriage is generally defined as the loss of a pregnancy before viability. An estimated 23 million miscarriages occur every year worldwide, translating to 44 pregnancy losses each minute. The pooled risk of miscarriage is 15·3% (95% CI 12·5-18·7%) of all recognised pregnancies. The population prevalence of women who have had one miscarriage is 10·8% (10·3-11·4%), two miscarriages is 1·9% (1·8-2·1%), and three or more miscarriages is 0·7% (0·5-0·8%). Risk factors for miscarriage include very young or older female age (younger than 20 years and older than 35 years), older male age (older than 40 years), very low or very high body-mass index, Black ethnicity, previous miscarriages, smoking, alcohol, stress, working night shifts, air pollution, and exposure to pesticides. The consequences of miscarriage are both physical, such as bleeding or infection, and psychological. Psychological consequences include increases in the risk of anxiety, depression, post-traumatic stress disorder, and suicide. Miscarriage, and especially recurrent miscarriage, is also a sentinel risk marker for obstetric complications, including preterm birth, fetal growth restriction, placental abruption, and stillbirth in future pregnancies, and a predictor of longer-term health problems, such as cardiovascular disease and venous thromboembolism. The costs of miscarriage affect individuals, health-care systems, and society. The short-term national economic cost of miscarriage is estimated to be £471 million per year in the UK. As recurrent miscarriage is a sentinel marker for various obstetric risks in future pregnancies, women should receive care in preconception and obstetric clinics specialising in patients at high risk. As psychological morbidity is common after pregnancy loss, effective screening instruments and treatment options for mental health consequences of miscarriage need to be available. We recommend that miscarriage data are gathered and reported to facilitate comparison of rates among countries, to accelerate research, and to improve patient care and policy development.


Asunto(s)
Aborto Espontáneo/epidemiología , Ansiedad/psicología , Depresión/psicología , Trastornos por Estrés Postraumático/psicología , Aborto Habitual/economía , Aborto Habitual/epidemiología , Aborto Habitual/fisiopatología , Aborto Habitual/psicología , Aborto Espontáneo/economía , Aborto Espontáneo/fisiopatología , Aborto Espontáneo/psicología , Endometritis/epidemiología , Femenino , Retardo del Crecimiento Fetal/epidemiología , Humanos , Nacimiento Prematuro/epidemiología , Prevalencia , Factores de Riesgo , Mortinato/epidemiología , Suicidio/psicología , Hemorragia Uterina/epidemiología
15.
Lancet ; 397(10285): 1668-1674, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915095

RESUMEN

The physical and psychological effect of miscarriage is commonly underappreciated. The journey from diagnosis of miscarriage, through clinical management, to supportive aftercare can be challenging for women, their partners, and caregivers. Diagnostic challenges can lead to delayed or ineffective care and increased anxiety. Inaccurate diagnosis of a miscarriage can result in the unintended termination of a wanted pregnancy. Uncertainty about the therapeutic effects of interventions can lead to suboptimal care, with variations across facilities and countries. For this Series paper, we have developed recommendations for practice from a literature review, appraisal of guidelines, and expert group discussions. The recommendations are grouped into three categories: (1) diagnosis of miscarriage, (2) prevention of miscarriage in women with early pregnancy bleeding, and (3) management of miscarriage. We recommend that every country reports annual aggregate miscarriage data, similarly to the reporting of stillbirth. Early pregnancy services need to focus on providing an effective ultrasound service, as it is central to the diagnosis of miscarriage, and be able to provide expectant management of miscarriage, medical management with mifepristone and misoprostol, and surgical management with manual vacuum aspiration. Women with the dual risk factors of early pregnancy bleeding and a history of previous miscarriage can be recommended vaginal micronised progesterone to improve the prospects of livebirth. We urge health-care funders and providers to invest in early pregnancy care, with specific focus on training for clinical nurse specialists and doctors to provide comprehensive miscarriage care within the setting of dedicated early pregnancy units.


Asunto(s)
Aborto Espontáneo/diagnóstico , Aborto Espontáneo/prevención & control , Aborto Espontáneo/terapia , Atención Prenatal/métodos , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/terapia , Ultrasonografía
16.
Lancet ; 397(10285): 1675-1682, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915096

RESUMEN

Women who have had repeated miscarriages often have uncertainties about the cause, the likelihood of recurrence, the investigations they need, and the treatments that might help. Health-care policy makers and providers have uncertainties about the optimal ways to organise and provide care. For this Series paper, we have developed recommendations for practice from literature reviews, appraisal of guidelines, and a UK-wide consensus conference that was held in December, 2019. Caregivers should individualise care according to the clinical needs and preferences of women and their partners. We define a minimum set of investigations and treatments to be offered to couples who have had recurrent miscarriages, and urge health-care policy makers and providers to make them universally available. The essential investigations include measurements of lupus anticoagulant, anticardiolipin antibodies, thyroid function, and a transvaginal pelvic ultrasound scan. The key treatments to consider are first trimester progesterone administration, levothyroxine in women with subclinical hypothyroidism, and the combination of aspirin and heparin in women with antiphospholipid antibodies. Appropriate screening and care for mental health issues and future obstetric risks, particularly preterm birth, fetal growth restriction, and stillbirth, will need to be incorporated into the care pathway for couples with a history of recurrent miscarriage. We suggest health-care services structure care using a graded model in which women are offered online health-care advice and support, care in a nurse or midwifery-led clinic, and care in a medical consultant-led clinic, according to clinical needs.


Asunto(s)
Aborto Habitual/diagnóstico , Aborto Habitual/prevención & control , Aborto Habitual/terapia , Aborto Habitual/psicología , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/prevención & control
17.
FASEB J ; 35(4): e21336, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749894

RESUMEN

Decidualizing endometrial stromal cells (EnSC) critically determine the maternal response to an implanting conceptus, triggering either menstruation-like disposal of low-fitness embryos or creating an environment that promotes further development. However, the mechanism that couples maternal recognition of low-quality embryos to tissue breakdown remains poorly understood. Recently, we demonstrated that successful transition of the cycling endometrium to a pregnancy state requires selective elimination of pro-inflammatory senescent decidual cells by activated uterine natural killer (uNK) cells. Here we report that uNK cells express CD44, the canonical hyaluronan (HA) receptor, and demonstrate that high molecular weight HA (HMWHA) inhibits uNK cell-mediated killing of senescent decidual cells. In contrast, low molecular weight HA (LMWHA) did not attenuate uNK cell activity in co-culture experiments. Killing of senescent decidual cells by uNK cells was also inhibited upon exposure to medium conditioned by IVF embryos that failed to implant, but not successful embryos. Embryo-mediated inhibition of uNK cell activity was reversed by recombinant hyaluronidase 2 (HYAL2), which hydrolyses HMWHA. We further report a correlation between the levels of HYAL2 secretion by human blastocysts, morphological scores, and implantation potential. Taken together, the data suggest a pivotal role for uNK cells in embryo biosensing and endometrial fate decisions at implantation.


Asunto(s)
Implantación del Embrión/fisiología , Células Asesinas Naturales/fisiología , Útero/citología , Útero/fisiología , Moléculas de Adhesión Celular , Técnicas de Cocultivo , Femenino , Proteínas Ligadas a GPI , Regulación del Desarrollo de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa
18.
Stem Cells ; 39(8): 1067-1080, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764639

RESUMEN

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.


Asunto(s)
Implantación del Embrión , Endometrio , Diferenciación Celular , Decidua , Embrión de Mamíferos , Femenino , Humanos , Embarazo , Células del Estroma
19.
Front Cell Dev Biol ; 9: 626619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585482

RESUMEN

Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the menstrual cycle with decidual transformation of perivascular cells (PVC) surrounding the terminal spiral arterioles and endometrial stromal cells (EnSC) underlying the luminal epithelium. Decidualization involves extensive cellular reprogramming and acquisition of a secretory phenotype, essential for coordinated placental trophoblast invasion. Secreted metabolites are an emerging class of signaling molecules, collectively known as the exometabolome. Here, we used liquid chromatography-mass spectrometry to characterize and analyze time-resolved changes in metabolite secretion (exometabolome) of primary PVC and EnSC decidualized over 8 days. PVC were isolated using positive selection of the cell surface marker SUSD2. We identified 79 annotated metabolites differentially secreted upon decidualization, including prostaglandin, sphingolipid, and hyaluronic acid metabolites. Secreted metabolites encompassed 21 metabolic pathways, most prominently glycerolipid and pyrimidine metabolism. Although temporal exometabolome changes were comparable between decidualizing PVC and EnSC, 32 metabolites were differentially secreted across the decidualization time-course. Further, targeted metabolomics demonstrated significant differences in secretion of purine pathway metabolites between decidualized PVC and EnSC. Taken together, our findings indicate that the metabolic footprints generated by different decidual subpopulations encode spatiotemporal information that may be important for optimal embryo implantation.

20.
Front Reprod Health ; 3: 804921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303960

RESUMEN

In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...