Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Transl Psychiatry ; 12(1): 106, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292625

RESUMEN

We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Haploinsuficiencia , Interneuronas , Ratones , Sinapsis
3.
Cell Rep ; 37(5): 109914, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731626

RESUMEN

A variety of mechanosensory neurons are involved in touch, proprioception, and pain. Many molecular components of the mechanotransduction machinery subserving these sensory modalities remain to be discovered. Here, we combine recordings of mechanosensitive (MS) currents in mechanosensory neurons with single-cell RNA sequencing. Transcriptional profiles are mapped onto previously identified sensory neuron types to identify cell-type correlates between datasets. Correlation of current signatures with single-cell transcriptomes provides a one-to-one correspondence between mechanoelectric properties and transcriptomically defined neuronal populations. Moreover, a gene-expression differential comparison provides a set of candidate genes for mechanotransduction complexes. Piezo2 is expectedly found to be enriched in rapidly adapting MS current-expressing neurons, whereas Tmem120a and Tmem150c, thought to mediate slow-type MS currents, are uniformly expressed in all mechanosensory neuron subtypes. Further knockdown experiments disqualify them as mediating MS currents in sensory neurons. This dataset constitutes an open resource to explore further the cell-type-specific determinants of mechanosensory properties.


Asunto(s)
Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica , Mecanotransducción Celular/genética , Neuronas/metabolismo , Transcriptoma , Animales , Ganglios Espinales/citología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Técnicas de Placa-Clamp , RNA-Seq , Análisis de la Célula Individual
4.
FASEB J ; 35(12): e22025, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758144

RESUMEN

Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aß-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.


Asunto(s)
Artritis Experimental/complicaciones , Ganglios Espinales/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Nociceptores/efectos de los fármacos , Dolor/tratamiento farmacológico , Pirilamina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Antagonistas de los Receptores Histamínicos H1/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.8/química , Nociceptores/metabolismo , Nociceptores/patología , Dolor/etiología , Dolor/metabolismo , Dolor/patología
5.
Nat Commun ; 9(1): 3804, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228263

RESUMEN

Defects in cerebrospinal fluid (CSF) flow may contribute to idiopathic scoliosis. However, the mechanisms underlying detection of CSF flow in the central canal of the spinal cord are unknown. Here we demonstrate that CSF flows bidirectionally along the antero-posterior axis in the central canal of zebrafish embryos. In the cfap298tm304 mutant, reduction of cilia motility slows transport posteriorly down the central canal and abolishes spontaneous activity of CSF-contacting neurons (CSF-cNs). Loss of the sensory Pkd2l1 channel nearly abolishes CSF-cN calcium activity and single channel opening. Recording from isolated CSF-cNs in vitro, we show that CSF-cNs are mechanosensory and require Pkd2l1 to respond to pressure. Additionally, adult pkd2l1 mutant zebrafish develop an exaggerated spine curvature, reminiscent of kyphosis in humans. These results indicate that CSF-cNs are mechanosensory cells whose Pkd2l1-driven spontaneous activity reflects CSF flow in vivo. Furthermore, Pkd2l1 in CSF-cNs contributes to maintenance of natural curvature of the spine.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Mecanotransducción Celular , Neuronas/metabolismo , Médula Espinal/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cilios/metabolismo
7.
Neuron ; 94(2): 266-270.e3, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28426961

RESUMEN

A gold standard for characterizing mechanically activated (MA) currents is via heterologous expression of candidate channels in naive cells. Two recent studies described MA channels using this paradigm. TMEM150c was proposed to be a component of an MA channel partly based on a heterologous expression approach (Hong et al., 2016). In another study, Piezo1's N-terminal "propeller" domain was proposed to constitute an intrinsic mechanosensitive module based on expression of a chimera between a pore-forming domain of the mechanically insensitive ASIC1 channel and Piezo1 (Zhao et al., 2016). When we attempted to replicate these results, we found each construct conferred modest MA currents in a small fraction of naive HEK cells similar to the published work. Strikingly, these MA currents were not detected in cells in which endogenous Piezo1 was CRISPR/Cas9 inactivated. These results highlight the importance of choosing cells lacking endogenous MA channels to assay the mechanotransduction properties of various proteins. This Matters Arising paper is in response to Hong et al. (2016) and Zhao et al. (2016) in Neuron. See also the response papers by Hong et al. (2017) and Zhao et al. (2017) published concurrently with this Matters Arising.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Neuronas/metabolismo , Transporte Biológico , Línea Celular , Humanos , Mutagénesis Insercional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...