Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 63(13): 1636-1646, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888931

RESUMEN

The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.


Asunto(s)
5-Aminolevulinato Sintetasa , Anemia Sideroblástica , Humanos , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , 5-Aminolevulinato Sintetasa/química , 5-Aminolevulinato Sintetasa/deficiencia , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Mutación con Pérdida de Función , Estabilidad de Enzimas , Hemo/metabolismo , Hemo/química , Porfirias/genética , Porfirias/metabolismo , Modelos Moleculares , Mutación , Protoporfiria Eritropoyética
2.
Protein Sci ; 32(4): e4600, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807942

RESUMEN

5-Aminolevulinic acid synthase (ALAS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of heme biosynthesis in α-proteobacteria and several non-plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C-terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C-terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C-terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C-terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel ß-sheet important to Fold-Type I PLP-dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C-terminus has a homolog-specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.


Asunto(s)
5-Aminolevulinato Sintetasa , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , 5-Aminolevulinato Sintetasa/química , Fosfato de Piridoxal/química , Dominio Catalítico , Hemo/química
3.
Front Mol Biosci ; 9: 884281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547395

RESUMEN

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.

4.
J Biol Chem ; 298(3): 101643, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093382

RESUMEN

Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.


Asunto(s)
5-Aminolevulinato Sintetasa , Anemia Sideroblástica , Enfermedades Genéticas Ligadas al Cromosoma X , 5-Aminolevulinato Sintetasa/química , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Animales , Hemo , Humanos , Relación Estructura-Actividad
5.
Nat Chem Biol ; 17(7): 751-752, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34103722

Asunto(s)
Hemo , Hierro
6.
Sci Immunol ; 5(53)2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188058

RESUMEN

Interleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3+Treg expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source. Whereas IL-33 derived from epithelial cells stimulates group 2 innate lymphoid cell (ILC2)-driven type 2 immunity and parasite clearance, we report that IL-33 derived from myeloid antigen-presenting cells (APCs) suppresses host-protective inflammatory responses. Conditional deletion of IL-33 in CD11c-expressing cells resulted in lowered numbers of intestinal Foxp3+Treg cells that express the transcription factor GATA3 and the IL-33 receptor ST2, causing elevated IL-5 and IL-13 production and accelerated anti-helminth immunity. We demonstrate that cell-intrinsic IL-33 promoted mouse dendritic cells (DCs) to express the pore-forming protein perforin-2, which may function as a conduit on the plasma membrane facilitating IL-33 export. Lack of perforin-2 in DCs blocked the proliferative expansion of the ST2+Foxp3+Treg subset. We propose that perforin-2 can provide a plasma membrane conduit in DCs that promotes the export of IL-33, contributing to mucosal immunoregulation under steady-state and infectious conditions.


Asunto(s)
Células Dendríticas/inmunología , Interleucina-33/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones por Strongylida/inmunología , Linfocitos T Reguladores/inmunología , Animales , Membrana Celular/metabolismo , Enfermedad Crónica , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Inmunidad Mucosa , Interleucina-33/análisis , Interleucina-33/genética , Masculino , Ratones , Ratones Transgénicos , Mucosa Nasal/inmunología , Mucosa Nasal/patología , Pólipos Nasales/inmunología , Pólipos Nasales/patología , Nematospiroides dubius/inmunología , Nippostrongylus/inmunología , Proteínas Citotóxicas Formadoras de Poros , Rinitis/inmunología , Rinitis/patología , Sinusitis/inmunología , Sinusitis/patología , Infecciones por Strongylida/parasitología , Linfocitos T Reguladores/metabolismo
7.
Protein Sci ; 28(7): 1239-1251, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30461098

RESUMEN

The protein quality control network (pQC) plays critical roles in maintaining protein and cellular homeostasis, especially during stress. Lon is a major pQC AAA+ protease, conserved from bacteria to human mitochondria. It is the principal enzyme that degrades most unfolded or damaged proteins. Degradation by Lon also controls cellular levels of several key regulatory proteins. Recently, our group determined that Escherichia coli Lon, previously thought to be an obligate homo-hexamer, also forms a dodecamer. This larger assembly has decreased ATPase activity and displays substrate-specific alterations in degradation compared with the hexamer. Here we experimentally probe the physical hexamer-hexamer interactions and the biological roles of the Lon dodecamer. Using structure prediction methods coupled with mutagenesis, we identified a key interface and specific residues within the Lon N domain that participates in an intermolecular coiled coil unique to the dodecamer. With this knowledge, we made a Lon variant (LonVQ ) that forms a dodecamer with increased stability, as determined by analytical ultracentrifugation and electron microscopy. Using this altered Lon, we characterize the Lon dodecamer's activities using a panel of substrates. Lon dodecamers are clearly functional, and complement critical lon- phenotypes but also exhibit altered substrate specificity. For example, the small heat shock proteins IbpA and IbpB are only efficiently degraded well by the hexamer. Thus, by elucidating the intermolecular contacts connecting the hexamers, we are starting to illuminate how dodecamer formation versus disassembly can alter Lon function under conditions where controlling specific activities and substrate preferences of this key protease may be advantageous.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Humanos , Dominios Proteicos , Especificidad por Sustrato
8.
Structure ; 26(4): 580-589.e4, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29551290

RESUMEN

5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders.


Asunto(s)
5-Aminolevulinato Sintetasa/química , Ácido Aminolevulínico/química , Hemo/química , Mitocondrias/enzimología , Subunidades de Proteína/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Ácido Aminolevulínico/metabolismo , Dominio Catalítico , Clonación Molecular , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemo/biosíntesis , Cinética , Mitocondrias/química , Mitocondrias/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
9.
Nucleic Acids Res ; 41(6): 3888-900, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396446

RESUMEN

MarR family proteins constitute a group of >12 000 transcriptional regulators encoded in bacterial and archaeal genomes that control gene expression in metabolism, stress responses, virulence and multi-drug resistance. There is much interest in defining the molecular mechanism by which ligand binding attenuates the DNA-binding activities of these proteins. Here, we describe how PcaV, a MarR family regulator in Streptomyces coelicolor, controls transcription of genes encoding ß-ketoadipate pathway enzymes through its interaction with the pathway substrate, protocatechuate. This transcriptional repressor is the only MarR protein known to regulate this essential pathway for aromatic catabolism. In in vitro assays, protocatechuate and other phenolic compounds disrupt the PcaV-DNA complex. We show that PcaV binds protocatechuate in a 1:1 stoichiometry with the highest affinity of any MarR family member. Moreover, we report structures of PcaV in its apo form and in complex with protocatechuate. We identify an arginine residue that is critical for ligand coordination and demonstrate that it is also required for binding DNA. We propose that interaction of ligand with this arginine residue dictates conformational changes that modulate DNA binding. Our results provide new insights into the molecular mechanism by which ligands attenuate DNA binding in this large family of transcription factors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas Represoras/química , Streptomyces coelicolor/genética , Arginina/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Hidroxibenzoatos/química , Ligandos , Modelos Moleculares , Regiones Operadoras Genéticas , Fenoles/química , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo
10.
J Biol Chem ; 288(2): 1286-94, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23172222

RESUMEN

Bacterial biofilms are complex communities of cells containing an increased prevalence of dormant cells known as persisters, which are characterized by an up-regulation of genes known as toxin-antitoxin (TA) modules. The association of toxins with their cognate antitoxins neutralizes toxin activity, allowing for normal cell growth. Additionally, protein antitoxins bind their own promoters and repress transcription, whereas the toxins serve as co-repressors. Recently, TA pairs have been shown to regulate their own transcription through a phenomenon known as conditional cooperativity, where the TA complexes bind operator DNA and repress transcription only when present in the proper stoichiometric amounts. The most differentially up-regulated gene in persister cells is mqsR, a gene that, with the antitoxin mqsA, constitutes a TA module. Here, we reveal that, unlike other TA systems, MqsR is not a transcription co-repressor but instead functions to destabilize the MqsA-DNA complex. We further show that DNA binding is not regulated by conditional cooperativity. Finally, using biophysical studies, we show that complex formation between MqsR and MqsA results in an exceptionally stable interaction, resulting in a subnanomolar dissociation constant that is similar to that observed between MqsA and DNA. In combination with crystallographic studies, this work reveals that MqsA binding to DNA and MqsR is mutually exclusive. To our knowledge, this is the first TA system in which the toxin does not function as a transcriptional co-repressor, but instead functions to destabilize the antitoxin-operator complex under all conditions, and thus defines another unique feature of the mqsRA TA module.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Operón , Regiones Promotoras Genéticas , Transcripción Genética , Secuencia de Bases , Dicroismo Circular , ADN Bacteriano/genética , Ensayo de Cambio de Movilidad Electroforética , Modelos Moleculares , Datos de Secuencia Molecular
11.
Nat Chem Biol ; 7(6): 359-66, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21516113

RESUMEN

Although it is well recognized that bacteria respond to environmental stress through global networks, the mechanism by which stress is relayed to the interior of the cell is poorly understood. Here we show that enigmatic toxin-antitoxin systems are vital in mediating the environmental stress response. Specifically, the antitoxin MqsA represses rpoS, which encodes the master regulator of stress. Repression of rpoS by MqsA reduces the concentration of the internal messenger 3,5-cyclic diguanylic acid, leading to increased motility and decreased biofilm formation. Furthermore, the repression of rpoS by MqsA decreases oxidative stress resistance via catalase activity. Upon oxidative stress, MqsA is rapidly degraded by Lon protease, resulting in induction of rpoS. Hence, we show that external stress alters gene regulation controlled by toxin-antitoxin systems, such that the degradation of antitoxins during stress leads to a switch from the planktonic state (high motility) to the biofilm state (low motility).


Asunto(s)
Antitoxinas/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Estrés Fisiológico , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Biopelículas , Regulación Bacteriana de la Expresión Génica/fisiología , Plancton , Proteasa La/metabolismo , Factor sigma/biosíntesis , Factor sigma/genética , Estrés Fisiológico/genética
12.
J Biol Chem ; 286(3): 2285-96, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21068382

RESUMEN

Bacterial cultures, especially biofilms, produce a small number of persister cells, a genetically identical subpopulation of wild type cells that are metabolically dormant, exhibit multidrug tolerance, and are highly enriched in bacterial toxins. The gene most highly up-regulated in Escherichia coli persisters is mqsR, a ribonuclease toxin that, along with mqsA, forms a novel toxin·antitoxin (TA) system. Like all known TA systems, both the MqsR·MqsA complex and MqsA alone regulate their own transcription. Despite the importance of TA systems in persistence and biofilms, very little is known about how TA modules, and antitoxins in particular, bind and recognize DNA at a molecular level. Here, we report the crystal structure of MqsA bound to a 26-bp fragment from the mqsRA promoter. We show that MqsA binds DNA predominantly via its C-terminal helix-turn-helix domain, with direct binding of recognition helix residues Asn(97) and Arg(101) to the DNA major groove. Unexpectedly, the structure also revealed that the MqsA N-terminal domain interacts with the DNA phosphate backbone. This results in a more than 105° rotation of the N-terminal domains between the free and complexed states, an unprecedented rearrangement for an antitoxin. The structure also shows that MqsA bends the DNA by more than 55° in order to achieve symmetrical binding. Finally, using a combination of biochemical and NMR studies, we show that the DNA sequence specificity of MqsA is mediated by direct readout.


Asunto(s)
ADN Bacteriano/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Regiones Promotoras Genéticas , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Transcripción Genética/fisiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-20823526

RESUMEN

The Escherichia coli proteins MqsR and MqsA comprise a novel toxin-antitoxin (TA) system. MqsA, the antitoxin, defines a new family of antitoxins because unlike other antitoxins MqsA is structured throughout its entire sequence, binds zinc and coordinates DNA via its C-terminal and not its N-terminal domain. In order to understand how bacterial antitoxins, and MqsA in particular, regulate transcription, the MqsA protein was cocrystallized with a 26-mer duplex DNA corresponding to the palindromic region of the mqsRA promoter. The merohedrally twinned crystal belonged to space group P4(1), with unit-cell parameters a=60.99, b=60.99, c=148.60 A. A complete data set was collected to a resolution of 2.1 A. The solvent content of the crystal was consistent with the presence of two MqsA molecules bound to the duplex DNA in the asymmetric unit.


Asunto(s)
ADN Bacteriano/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Regiones Promotoras Genéticas , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Unión Proteica
14.
PLoS Pathog ; 5(12): e1000706, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041169

RESUMEN

One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021), which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA) pair. MqsR adopts an alpha/beta fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy). Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state.


Asunto(s)
Toxinas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Genes Bacterianos , Modelos Moleculares , Estructura Cuaternaria de Proteína
15.
Protein Expr Purif ; 62(1): 9-14, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18678258

RESUMEN

Spine-associated RapGAP (SPAR) is a 1783 residue, multidomain scaffolding protein which is a component of the NMDA receptor/PSD-95 complex in the post-synaptic density (PSD) of dendritic spines. Using a parallel expression screening approach, we identified a strategy to solubly express the SPAR PDZ domain in Escherichia coli. We show that maltose binding protein is required for the production of solubly expressed protein. We also show that small changes in construct length (2-5 residues) result in differential susceptibilities of the expressed proteins to proteolytic digestion, required for the expression tag removal. This has allowed us to identify a large-scale E. coli expression and purification protocol that results in the production of mg quantities of the SPAR PDZ domain. This is the first time that any of the multiple SPAR functional domains have been expressed in E. coli in quantities suitable for biophysical and biochemical studies, allowing us to investigate the role of the PDZ domain in SPAR function within the PSD.


Asunto(s)
Escherichia coli/genética , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Dominios PDZ , Animales , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Proteínas Activadoras de GTPasa/aislamiento & purificación , Proteínas de Unión a Maltosa , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Ratas , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...