RESUMEN
Untargeted tandem mass spectrometry (MS/MS) is an essential technique in modern analytical chemistry, providing a comprehensive snapshot of chemical entities in complex samples and identifying unknowns through their fragmentation patterns. This high-throughput approach generates large data sets that can be challenging to interpret. Molecular Networks (MNs) have been developed as a computational tool to aid in the organization and visualization of complex chemical space in untargeted mass spectrometry data, thereby supporting comprehensive data analysis and interpretation. MNs group related compounds with potentially similar structures from MS/MS data by calculating all pairwise MS/MS similarities and filtering these connections to produce a MN. Such networks are instrumental in metabolomics for identifying novel metabolites, elucidating metabolic pathways, and even discovering biomarkers for disease. While MS/MS similarity metrics have been explored in the literature, the influence of network topology approaches on MN construction remains unexplored. This manuscript introduces metrics for evaluating MN construction, benchmarks state-of-the-art approaches, and proposes the Transitive Alignments approach to improve MN construction. The Transitive Alignment technique leverages the MN topology to realign MS/MS spectra of related compounds that differ by multiple structural modifications. Combining this Transitive Alignments approach with pseudoclique finding, a method for identifying highly connected groups of nodes in a network, resulted in more complete and higher-quality molecular families. Finally, we also introduce a targeted network construction technique called induced transitive alignments where we demonstrate effectiveness on a real world natural product discovery application. We release this transitive alignment technique as a high-throughput workflow that can be used by the wider research community.
Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Algoritmos , Redes y Vías MetabólicasRESUMEN
Effective fisheries management requires accurate estimates of stock biomass and trends; yet, assumptions in stock assessment models generate high levels of uncertainty and error. For 230 fisheries worldwide, we contrasted stock biomass estimates at the time of assessment with updated hindcast estimates modeled for the same year in later assessments to evaluate systematic over- or underestimation. For stocks that were overfished, low value, or located in regions with rising temperatures, historical biomass estimates were generally overstated compared with updated assessments. Moreover, rising trends reported for overfished stocks were often inaccurate. With consideration of bias identified retrospectively, 85% more stocks than currently recognized have likely collapsed below 10% of maximum historical biomass. The high uncertainty and bias in modeled stock estimates warrants much greater precaution by managers.
Asunto(s)
Biomasa , Explotaciones Pesqueras , Animales , Peces , Incertidumbre , Conservación de los Recursos Naturales , Modelos TeóricosRESUMEN
Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints. We apply the model to a case study of seagrass restoration and find recovery times following restoration action can vary greatly, from <1 to >20 years. The model also shows how recovery can be accelerated when restoration actions are matched to the constraints on recovery. For example, spreading of propagules can be used when connectivity is the critical restriction. The recovery constraints we articulated mathematically also apply to the restoration of coral reefs, mangroves, saltmarsh, shellfish reefs and macroalgal forests, so our model provides a general framework for choosing restoration actions that accelerate coastal habitat recovery.
Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Conservación de los Recursos Naturales/métodos , Modelos Biológicos , Modelos Teóricos , Alismatales/fisiologíaRESUMEN
Driven by the United Nations Decade on Restoration and international funding initiatives, such as the Mangrove Breakthrough, investment in mangrove restoration is expected to increase. Yet, mangrove restoration efforts frequently fail, usually because of ad hoc site-selection processes that do not consider mangrove ecology and the socioeconomic context. Using decision analysis, we developed an approach that accounts for socioeconomic and ecological data to identify sites with the highest likelihood of mangrove restoration success. We applied our approach in the Biosphere Reserve Marismas Nacionales Nayarit, Mexico, an area that recently received funding for implementing mangrove restoration actions. We identified 468 potential restoration sites, assessed their restorability potential based on socioeconomic and ecological metrics, and ranked sites for implementation with spatial optimization. The metrics we used included favorable conditions for propagules to establish and survive under sea-level rise, provision of ecosystem services, and community dynamics. Sites that were selected based on socioeconomic or ecological metrics alone had lower likelihood of mangrove restoration success than sites that were selected based on integrated socioeconomic and ecological metrics. For example, selecting sites based on only socioeconomic metrics captured 16% of the maximum attainable value of functioning mangroves able to provide propagules to potential restoration sites, whereas selecting sites based on ecological and socioeconomic metrics captured 46% of functioning mangroves. Our approach was developed as part of a collaboration between nongovernmental organizations, local government, and academics under rapid delivery time lines given preexisting mangrove restoration implementation commitments. The systematic decision process we used integrated socioeconomic and ecological considerations even under short delivery deadlines, and our approach can be adapted to help mangrove restoration site-selection decisions elsewhere.
Integración de datos socioeconómicos y ecológicos en las prácticas de restauración Resumen Se espera que la inversión en la restauración de los manglares incremente debido a la Década de Restauración de las Naciones Unidad y las iniciativas internacionales de financiamiento, como The Mangrove Breakthrough. Sin embargo, los esfuerzos de restauración de manglares fallan con frecuencia, generalmente por los procesos de selección de sitios adhoc que no consideran la ecología del manglar y el contexto socioeconómico. Usamos el análisis de decisiones para desarrollar una estrategia que considera los datos socioeconómicos y ecológicos para identificar los sitios con mayor probabilidad de éxito de restauración. Aplicamos nuestra estrategia en la Reserva de la Biósfera Marismas Nacionales Nayarit, México, un área que recibió financiamiento reciente para la restauración del manglar. Identificamos 468 sitios potencialmente restaurables, evaluamos su potencial de restauración con base en medidas ecológicas y socioeconómicas y clasificamos los sitios para la implementación con la optimización espacial. Las medidas que usamos incluían las condiciones favorables para que los propágulos se establezcan y sobrevivan con el incremento en el nivel del mar, el suministro de servicios ambientales y las dinámicas de la comunidad. Los sitios seleccionados sólo con base en las medidas ecológicas o socioeconómicas tuvieron una menor probabilidad de éxito de restauración que los sitios que se seleccionaron con base en medidas socioeconómicas y ecológicas integradas. Por ejemplo, la selección de sitios con base sólo en las medidas socioeconómicas capturó el 16% del máximo valor alcanzable de manglares funcionales capaces de proporcionar propágulos a los sitios potenciales de restauración, mientras que la selección basada en medidas ecológicas y socioeconómicas capturó el 46% de los manglares funcionales. Desarrollamos nuestra estrategia como parte de una colaboración entre organizaciones no gubernamentales, el gobierno local y académicos sujetos a una fecha pronta de entrega debido a los compromisos preexistentes para la restauración de manglares. El proceso de decisión sistemática que usamos integró las consideraciones ecológicas y socioeconómicas incluso con plazos cortos de entrega. Nuestra estrategia puede adaptarse para apoyar en la selección de sitios de restauración de manglares en otros sitios.
Asunto(s)
Conservación de los Recursos Naturales , Factores Socioeconómicos , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/economía , México , Restauración y Remediación Ambiental/economía , Ecosistema , Técnicas de Apoyo para la DecisiónRESUMEN
Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.
Asunto(s)
Péptidos de Penetración Celular , Ciclotidas , Neoplasias , Humanos , Ciclotidas/farmacología , Ciclotidas/metabolismo , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismoRESUMEN
Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology. Workflow application gives peptides with >292x improved cell proliferation potencies and no off-target cell proliferation effects ( > 3800x on-target index). Application of these 'design rules' to a distinct Mdm2(X) peptide series improves ( > 150x) cellular potencies and removes off-target toxicities. The outlined workflow should facilitate therapeutic impacts, especially for those targets such as Mdm2(X) that have hydrophobic interfaces and are targetable with a helical motif.
Asunto(s)
Péptidos , Proteínas Proto-Oncogénicas c-mdm2 , Péptidos/farmacología , Péptidos/químicaRESUMEN
The coastal environment is not managed in a way that considers the impact of cumulative threats, despite being subject to threats from all realms (marine, land, and atmosphere). Relationships between threats and species are often nonlinear; thus, current (linear) approaches to estimating the impact of threats may be misleading. We developed a data-driven approach to assessing cumulative impacts on ecosystems and applied it to explore nonlinear relationships between threats and a temperate reef fish community. We used data on water quality, commercial fishing, climate change, and indicators of recreational fishing and urbanization to build a cumulative threat map of the northern region in New South Wales, Australia. We used statistical models of fish abundance to quantify associations among threats and biophysical covariates and predicted where cumulative impacts are likely to have the greatest impact on fish. We also assessed the performance of no-take zones (NTZs), to protect fish from cumulative threats across 2 marine protected area networks (marine parks). Fishing had a greater impact on fish than water quality threats (i.e., percent increase above the mean for invertivores was 337% when fishing was removed and was 11% above the mean when water quality was removed inside NTZs), and fishing outside NTZs affected fish abundances inside NTZs. Quantifying the spatial influence of multiple threats enables managers to understand the multitude of management actions required to address threats.
Una estrategia basada en datos para la evaluación de impacto de múltiples estresores en un área marina protegida Resumen Los ambientes costeros no se manejan de manera que se considere el impacto de las amenazas acumulativas, a pesar de que se enfrentan a amenazas de todos los entornos (marinas, terrestres y atmosféricas). Las relaciones entre las amenazas y las especies casi siempre son no lineales; por lo tanto, las estrategias actuales (lineales) para estimar el impacto de las amenazas pueden ser engañosas. Desarrollamos una estrategia basada en datos para evaluar el impacto acumulativo sobre los ecosistemas y la aplicamos para explorar las relaciones no lineales entre las amenazas y la comunidad de peces de arrecifes templados. Usamos datos de la calidad del agua, pesca comercial, cambio climático e indicadores de pesca recreativa y urbanización para construir un mapa acumulativo de amenazas de la región norte de Nueva Gales del Sur, Australia. Usamos modelos estadísticos de la abundancia de peces para cuantificar las asociaciones entre las amenazas y las covarianzas biofísicas y pronosticamos en dónde es probable que los impactos acumulativos sean mayores sobre los peces. También evaluamos el desempeño de las zonas de veda para así proteger a los peces de las amenazas acumulativas en dos redes de áreas marinas protegidas (parques marinos). La pesca tuvo un mayor impacto que la calidad del agua sobre los peces (es decir, el incremento del porcentaje por encima de la media de depredadores de invertebrados fue de 337% cuando se eliminó la pesca y fue de 11% por encima de la media cuando se eliminó la calidad del agua dentro de las zonas de veda) y la pesca fuera de las zonas de veda afectó la abundancia de los peces dentro de ellas. La cuantificación de la influencia espacial de las múltiples amenazas permite que los gestores entiendan la multitud de acciones de manejo que se requieren para abordar las amenazas.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Explotaciones Pesqueras , Caza , Australia , PecesRESUMEN
DAXX (Death Domain Associated Protein 6) is frequently upregulated in various common cancers, and its suppression has been linked to reduced tumor progression. Consequently, DAXX has gained significant interest as a therapeutic target in such cancers. DAXX is known to function in several critical biological pathways including chromatin remodelling, transcription regulation, and DNA repair. Leveraging structural information, we have designed and developed a novel set of stapled/stitched peptides that specifically target a surface on the N-terminal helical bundle domain of DAXX. This surface serves as the anchor point for binding to multiple interaction partners, such as Rassf1C, p53, Mdm2, and ATRX, as well as for the auto-regulation of the DAXX N-terminal SUMO interaction motif (SIM). Our experiments demonstrate that these peptides effectively bind to and inhibit DAXX with a higher affinity than the known interaction partners. Furthermore, these peptides release the auto-inhibited SIM, enabling it to interact with SUMO-1. Importantly, we have developed stitched peptides that can enter cells, maintaining their intracellular concentrations at nanomolar levels even after 24 hours, without causing any membrane perturbation. Collectively, our findings suggest that these stitched peptides not only serve as valuable tools for probing the molecular interactions of DAXX but also hold potential as precursors to the development of therapeutic interventions.
RESUMEN
Cyclic peptides are poised to target historically difficult to drug intracellular protein-protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e., mechanoporation), resulting in intracellular delivery of impermeable macromolecules in vector- and electrophoretic-free approaches. However, the number of payloads (e.g., peptides) and/or concentrations delivered via microfluidic mechanoporation is limited by having to pre-mix cells and payloads, a manually intensive process. In this work, we show that cells are momentarily permeable (t 1/2 = 1.1-2.8 min) after microfluidic vortex shedding (µVS) and that lower molecular weight macromolecules can be cytosolically delivered upon immediate exposure after cells are processed/permeabilized. To increase the ability to screen peptides, we built a system, dispensing-microfluidic vortex shedding (DµVS), that integrates a µVS chip with inline microplate-based dispensing. To do so, we synced an electronic pressure regulator, flow sensor, on/off dispense valve, and an x-y motion platform in a software-driven feedback loop. Using this system, we were able to deliver low microliter-scale volumes of transiently mechanoporated cells to hundreds of wells on microtiter plates in just several minutes (e.g., 96-well plate filled in <2.5 min). We validated the delivery of an impermeable peptide directed at MDM2, a negative regulator of the tumor suppressor p53, using a click chemistry- and NanoBRET-based cell permeability assay in 96-well format, with robust delivery across the full plate. Furthermore, we demonstrated that DµVS could be used to identify functional, low micromolar, cellular activity of otherwise cell-inactive MDM2-binding peptides using a p53 reporter cell assay in 96- and 384-well format. Overall, DµVS can be combined with downstream cell assays to investigate intracellular target engagement in a high-throughput manner, both for improving structure-activity relationship efforts and for early proof-of-biology of non-optimized peptide (or potentially other macromolecular) tools.
RESUMEN
Mangrove forests support unique biodiversity and provide a suite of ecosystem services (ES) that benefit people. Decades of continual mangrove loss and degradation have necessitated global efforts to protect and restore this important ecosystem. Generating and evaluating asset maps of biodiversity and ES is an important precursor to identifying locations that can deliver conservation outcomes across varying scales, such as maximising the co-occurrence of specific ES. We bring together global datasets on mangrove-affiliated biodiversity, carbon stocks, fish and invertebrate production, and coastal protection to provide insight into potential trade-offs, synergies and opportunities from mangrove conservation. We map opportunities where high ES provision co-occurs with these areas that could be leveraged in conservation planning, and identify potential high-value opportunities for single ES that might otherwise be missed with a biodiversity focus. Hotspots of single ES, co-occurrence of multiple ES, and opportunities to simultaneously leverage biodiversity and ES occurred throughout the world. For example, efforts that focus on conserving or restoring mangroves to store carbon can be targed to deliver multiple ES benefits. Some nations, such as Vietnam, Oman, Ecuador and China, showed consistent (although not necessarily strong) correlations between ES pairs. A lack of clear or consistent spatial trends elsewhere suggests that some nations will likely benefit more from complementarity-based approaches that focus on multiple sites with high provision of different services. Individual sites within these nations, however, such as Laguna de Terminos in Mexico still provide valuable opportunities to leverage co-benefits. Ensuring that an ES focused approach is complemented by strategic spatial planning is a priority, and our analyses provide a precursor towards decisions about where and how to invest.
Asunto(s)
Carbono , Ecosistema , Humanos , Animales , Conservación de los Recursos Naturales , Biodiversidad , InvertebradosRESUMEN
Ecosystems are increasingly affected by multiple anthropogenic stressors that contribute to habitat degradation and loss. Natural ecosystems are highly dynamic, yet multiple stressor experiments often ignore variability in stressor intensity and do not consider how effects could be mediated across trophic levels, with implications for models that underpin stressor management. Here, we investigated the in situ effects of changes in stressor intensity (i.e., fluctuations) and synchronicity (i.e., timing of fluctuations) on a seagrass community, applying the stressors reduced light and physical disturbance to the sediment. We used structural equation models (SEMs) to identify causal effects of dynamic multiple stressors on seagrass shoot density and leaf surface area, and abundance of associated crustaceans. Responses depended on whether stressor intensities fluctuated or remained static. Relative to static stressor exposure at the end of the experiment, shoot density, leaf surface area, and crustacean abundance all declined under in-phase (synchronous; 17, 33, and 30 % less, respectively) and out-of-phase (asynchronous; 11, 28, and 39 % less, respectively) fluctuating treatments. Static treatment increased seagrass leaf surface area and crustacean abundance relative to the control group. We hypothesised that crustacean responses are mediated by changes in seagrass; however, causal analysis found only weak evidence for a mediation effect via leaf surface area. Changes in crustacean abundance, therefore, were primarily a direct response to stressors. Our results suggest that the mechanisms underpinning stress responses change when stressors fluctuate. For instance, increased leaf surface area under static stress could be caused by seagrass acclimating to low light, whereas no response under fluctuating stressors suggests an acclimation response was not triggered. The SEMs also revealed that community responses to the stressors can be independent of one another. Therefore, models based on static experiments may be representing ecological mechanisms not observed in natural ecosystems, and underestimating the impacts of stressors on ecosystems.
Asunto(s)
Ecosistema , Hojas de la PlantaRESUMEN
RadH is one of the flavin-dependent halogenases that has previously exhibited promising catalytic activity towards hydroxycoumarin, hydroxyisoquinoline, and phenolic derivatives. Here, we evaluated new functional homologs of RadH and expanded its specificities for the halogenation of non-tryptophan-derived, heterocyclic scaffolds. Our investigation revealed that RadH could effectively halogenate hydroxyquinoline and hydroxybenzothiophene. Assay optimization studies revealed the need to balance the various co-factor concentrations and where a GDHi co-factor recycling system most significantly improves the conversion and efficiency of the reaction. A crystal structure of RadH was also obtained with a resolution of 2.4 Å, and docking studies were conducted to pinpoint the binding and catalytic sites for substrates.
Asunto(s)
Halogenación , Oxidorreductasas , Oxidorreductasas/metabolismo , Dominio Catalítico , Flavinas/química , Flavinas/metabolismoRESUMEN
Tandem mass spectrometry based on diagnostic gas-phase ion-molecule reactions represents a robust method for functional group identification in unknown compounds. To date, most of these reactions have been studied using unit-resolution instruments, such as linear quadrupole ion traps and triple quadrupoles, which cannot be used to obtain elemental composition information for the species of interest. In this study, a high-resolution mass spectrometer, a quadrupole/orbitrap/linear quadrupole ion trap tribrid, was modified by installing a portable reagent inlet system to obtain high-resolution data for ion-molecule reactions. Examination of a previously published test system, the reaction between protonated 1,1'-sulfonyldiimizadole with 2-methoxypropene, demonstrated the ability to perform ion-molecule reactions on the modified tribrid mass spectrometer. High-resolution data were obtained for ion-molecule reactions of three isobaric ions (protonated glycylalanine, protonated glutamine, and protonated lysine) with diethylmethoxyborane. On the basis of these data, the isobaric ions can be differentiated based on both their measured accurate mass as well as the different product ions they generated upon the ion-molecule reactions. In a different experiment, analyte ions were subjected to collision-induced dissociation (CID), and the structures of the resulting fragment ions were examined via diagnostic ion-molecule reactions. This experiment allows for the functional group interrogation of fragment ions and can be used to improve the understanding of the structures of fragment ions generated in the gas phase.
RESUMEN
There is an increasing need for long-term monitoring of ecosystems and their services to inform on-ground management. The supply of many ecosystem services relies on connections that span multiple ecosystems. Monitoring the underlying condition of interconnected ecosystems is therefore required to track effectiveness of past interventions and identify impending change. Here we test the performance of indicators of ecosystem services with the aim of identifying the time-scales over which indicators of ecosystem services responded to change. We chose a case-study of a catchment in Northern Australia, where water resource development is a threat to the river flows that support vegetation growth and the life-cycle of coastal fishery species. We developed a novel approach to performance testing that drew on state-space modelling to capture ecological dynamics, and structural equation modelling to capture covariation in indicator time series. We first quantified covariation among three ecological indicators that had time-series data: pasture biomass, vegetation greenness and barramundi catch per unit effort. Higher values of all indicators occurred in years with greater river flow. We then predicted the emergence times for each indicator, as the time taken for a trend in an indicator to emerge from the background of natural variation. Emergence times were > 10 years in all cases, quantified at 80 % and higher confidence levels. Past trends and current status of ecosystem service flows are often used by decision makers to directly inform near-term actions, particularly for provisioning services (such as barramundi catch) due to their important contribution to regional economies. We found that ecological indicators could be used to assess historical performance over decadal timespans, but not as short-term indicators of recent change. More generally, we offer an approach to performance testing of indicators. This approach could be useful for quantifying timescales of ecosystem response in systems where cross-ecosystem connections are important.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ríos , Recursos Hídricos , Biomasa , Monitoreo del AmbienteRESUMEN
Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.
Asunto(s)
Enfermedad de Huntington , Tomografía de Emisión de Positrones , Animales , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligandos , Tomografía de Emisión de Positrones/métodos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismoRESUMEN
As efforts to restore coastal habitats accelerate, it is critical that investments are targeted to most effectively mitigate and reverse habitat loss and its impacts on biodiversity. One likely but largely overlooked impediment to effective restoration of habitat-forming organisms is failing to explicitly consider non-habitat-forming animals in restoration planning, implementation, and monitoring. These animals can greatly enhance or degrade ecosystem function, persistence, and resilience. Bivalves, for instance, can reduce sulfide stress in seagrass habitats and increase drought tolerance of saltmarsh vegetation, whereas megaherbivores can detrimentally overgraze seagrass or improve seagrass seed germination, depending on the context. Therefore, understanding when, why, and how to directly manipulate or support animals can enhance coastal restoration outcomes. In support of this expanded restoration approach, we provide a conceptual framework, incorporating lessons from structured decision-making, and describe potential actions that could lead to better restoration outcomes using case studies to illustrate practical approaches.
RESUMEN
Ecosystems remain under enormous pressure from multiple anthropogenic stressors. Manipulative experiments evaluating stressor interactions and impacts mostly apply stressors under static conditions without considering how variable stressor intensity (i.e. fluctuations) and synchronicity (i.e. timing of fluctuations) affect biological responses. We ask how variable stressor intensity and synchronicity, and interaction type, can influence how multiple stressors affect seagrass. At the highest intensities, fluctuating stressors applied asynchronously reduced seagrass biomass 36% more than for static stressors, yet no such difference occurred for photosynthetic capacity. Testing three separate hypotheses to predict underlying drivers of differences in biological responses highlighted alternative modes of action dependent on how stressors fluctuated over time. Given that environmental conditions are constantly changing, assessing static stressors may lead to inaccurate predictions of cumulative effects. Translating multiple stressor experiments to the real world, therefore, requires considering variability in stressor intensity and the synchronicity of fluctuations.
Asunto(s)
Ecosistema , Fotosíntesis , BiomasaRESUMEN
Several representative pyrimidine derivatives were selected to undergo electrospray ionization (ESI) followed by collision-induced dissociation tandem mass spectrometry (CID MS/MS) experiments. Two competitive pathways were found to govern the formation of major fragment ions from protonated species of these molecules. The pathways were largely affected by the 2-O-methyl group but not significantly influenced by the substitution on C-5 site of the pyrimidine ring. These findings were supported by both deuterium labeling CID MS/MS experiments and theoretical calculations. The deuterium labeled pyrimidine ion molecules were generated in-source in ESI from the fully deuterated hydrazinyl pyrimidines, which were readily obtained through hydrogen/deuterium (H/D) exchange when dissolved in deuterium oxide (D2 O).