Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659776

RESUMEN

CRISPR-Cas9 is a useful tool for inserting precise genetic alterations through homology-directed repair (HDR), although current methods rely on provision of an exogenous repair template. Here, we tested the possibility of repairing heterozygous single nucleotide variants (SNVs) using the cell's own wild-type allele rather than an exogenous template. Using high-fidelity Cas9 to perform allele-specific CRISPR across multiple human leukemia cell lines as well as in primary hematopoietic cells from patients with leukemia, we find high levels of reversion to wild-type in the absence of exogenous template. Moreover, we demonstrate that bulk treatment to revert a truncating mutation in ASXL1 using CRISPR-mediated interallelic gene conversion (IGC) is sufficient to prolong survival in a human cell line-derived xenograft model (median survival 33 days vs 27.5 days; p = 0.0040). These results indicate that IGC can be applied to numerous types of leukemia and can meaningfully alter cellular phenotypes at scale. Because our method targets single-base mutations, rather than larger variants targeted by IGC in prior studies, it greatly expands the pool of risk-increasing genetic lesions which could potentially be targeted by IGC. This technique may reduce cost and complexity for experiments modeling phenotypic consequences of SNVs. The principles of SNV-specific IGC demonstrated in this proof-of-concept study could be applied to investigate the phenotypic effects of targeted clonal reduction of leukemogenic SNV driver mutations.

2.
Blood Adv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608257

RESUMEN

Clonal hematopoiesis (CH) is an age-associated phenomenon leading to increased risk of both hematologic malignancy and non-malignant organ dysfunction. Increasingly available genetic testing has made incidental discovery of CH clinically common, yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and to refine standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this registry recapitulate the molecular epidemiology of CH from biobank scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. CH patients had higher rates of end organ dysfunction, in particular chronic kidney disease (p=0.001). Among patients with CH, variant allele frequency was independently associated with presence of cytopenias (p=0.008) and progression to hematologic malignancy (p=0.010), while other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias (p=0.013) and hematologic malignancy progression (p=0.004), supporting a recently published CH risk score. Surprisingly, ~30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having CHIP, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions is underway and will be critical to understand how to thoughtfully care for this patient population.

3.
Blood Adv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507736

RESUMEN

Clonal hematopoiesis (CH) is an age-associated phenomenon that increases risk for hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood1. Here, we profile peripheral blood gene expression in 66,968 single cells from a cohort of 17 CH patients and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant TET2 and DNMT3A cells to non-mutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a pro-inflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage Inhibitory Factor (MIF). We also found that T cells from CH patients, though mostly un-mutated, had decreased expression of GTPase of the immunity associated protein (GIMAP) genes, which are critical to T cell development, suggesting that CH impairs T cell function.

4.
Cancer Res ; 84(7): 1101-1114, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285895

RESUMEN

Impairing the BET family coactivator BRD4 with small-molecule inhibitors (BETi) showed encouraging preclinical activity in treating acute myeloid leukemia (AML). However, dose-limiting toxicities and limited clinical activity dampened the enthusiasm for BETi as a single agent. BETi resistance in AML myeloblasts was found to correlate with maintaining mitochondrial respiration, suggesting that identifying the metabolic pathway sustaining mitochondrial integrity could help develop approaches to improve BETi efficacy. Herein, we demonstrated that mitochondria-associated lactate dehydrogenase allows AML myeloblasts to utilize lactate as a metabolic bypass to fuel mitochondrial respiration and maintain cellular viability. Pharmacologically and genetically impairing lactate utilization rendered resistant myeloblasts susceptible to BET inhibition. Low-dose combinations of BETi and oxamate, a lactate dehydrogenase inhibitor, reduced in vivo expansion of BETi-resistant AML in cell line and patient-derived murine models. These results elucidate how AML myeloblasts metabolically adapt to BETi by consuming lactate and demonstrate that combining BETi with inhibitors of lactate utilization may be useful in AML treatment. SIGNIFICANCE: Lactate utilization allows AML myeloblasts to maintain metabolic integrity and circumvent antileukemic therapy, which supports testing of lactate utilization inhibitors in clinical settings to overcome BET inhibitor resistance in AML. See related commentary by Boët and Sarry, p. 950.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Animales , Ratones , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ácido Láctico , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lactato Deshidrogenasas , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
5.
Cell Rep Med ; 4(10): 101227, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37852183

RESUMEN

Drug repositioning seeks to leverage existing clinical knowledge to identify alternative clinical settings for approved drugs. However, repositioning efforts fail to demonstrate improved success rates in late-stage clinical trials. Focusing on 11 approved kinase inhibitors that have been evaluated in 139 repositioning hypotheses, we use data mining to characterize the state of clinical repurposing. Then, using a simple experimental correction with human serum proteins in in vitro pharmacodynamic assays, we develop a measurement of a drug's effective exposure. We show that this metric is remarkably predictive of clinical activity for a panel of five kinase inhibitors across 23 drug variant targets in leukemia. We then validate our model's performance in six other kinase inhibitors for two types of solid tumors: non-small cell lung cancer (NSCLC) and gastrointestinal stromal tumors (GISTs). Our approach presents a straightforward strategy to use existing clinical information and experimental systems to decrease the clinical failure rate in drug repurposing studies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Leucemia , Neoplasias Pulmonares , Humanos , Reposicionamiento de Medicamentos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
6.
J Evol Biol ; 36(2): 444-460, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36514852

RESUMEN

Mutant dynamics in fragmented populations have been studied extensively in evolutionary biology. Yet, open questions remain, both experimentally and theoretically. Some of the fundamental properties predicted by models still need to be addressed experimentally. We contribute to this by using a combination of experiments and theory to investigate the role of migration in mutant distribution. In the case of neutral mutants, while the mean frequency of mutants is not influenced by migration, the probability distribution is. To address this empirically, we performed in vitro experiments, where mixtures of GFP-labelled ("mutant") and non-labelled ("wid-type") murine cells were grown in wells (demes), and migration was mimicked via cell transfer from well to well. In the presence of migration, we observed a change in the skewedness of the distribution of the mutant frequencies in the wells, consistent with previous and our own model predictions. In the presence of de novo mutant production, we used modelling to investigate the level at which disadvantageous mutants are predicted to exist, which has implications for the adaptive potential of the population in case of an environmental change. In panmictic populations, disadvantageous mutants can persist around a steady state, determined by the rate of mutant production and the selective disadvantage (selection-mutation balance). In a fragmented system that consists of demes connected by migration, a steady-state persistence of disadvantageous mutants is also observed, which, however, is fundamentally different from the mutation-selection balance and characterized by higher mutant levels. The increase in mutant frequencies above the selection-mutation balance can be maintained in small ( N < N c ) demes as long as the migration rate is sufficiently small. The migration rate above which the mutants approach the selection-mutation balance decays exponentially with N / N c . The observed increase in the mutant numbers is not explained by the change in the effective population size. Implications for evolutionary processes in diseases are discussed, where the pre-existence of disadvantageous drug-resistant mutant cells or pathogens drives the response of the disease to treatments.


Asunto(s)
Modelos Genéticos , Selección Genética , Animales , Ratones , Mutación , Dinámica Poblacional , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA