Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 558: 111764, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36038076

RESUMEN

Renal water reabsorption increases in pregnancy and lactation to expand maternal blood volume to cope with the cardiovascular demands of the developing fetus and new-born baby. Vasopressin (antidiuretic hormone) promotes renal water reabsorption and its secretion is principally stimulated by body fluid osmolality. Hence, lowered osmolality normally decreases vasopressin secretion. However, despite water retention profoundly reducing osmolality in pregnancy and lactation, vasopressin levels are maintained to drive blood volume expansion. Despite its importance for successful reproduction, the cellular mechanisms that maintain vasopressin secretion in the face of decreased osmolality during pregnancy and lactation are unknown. Vasopressin is secreted by neurons that are intrinsically osmosensitive through expression of N-terminal truncated-transient receptor potential vanilloid-1 channel, ΔN-TRPV1, which is mechanically activated by osmotically-induced cell shrinkage to increase vasopressin neuron activity. Vasopressin neurons also express TRPV4 but the role of TRPV4 in vasopressin neuron function is not well characterised. Here, we summarise our novel evidence showing that TRPV4 forms functional channels with ΔN-TRPV1 that have a greater single-channel conductance compared to channels with ΔN-TRPV1 alone. We propose that upregulation of TRPV4 heteromerisation with ΔN-TRPV1 might maintain vasopressin secretion in pregnancy and lactation to expand blood volume for successful reproduction.


Asunto(s)
Canales Catiónicos TRPV , Vasopresinas , Embarazo , Femenino , Humanos , Canales Catiónicos TRPV/metabolismo , Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico , Lactancia , Agua/metabolismo
2.
Cells ; 11(11)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681496

RESUMEN

Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike 'activates' the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Canales Epiteliales de Sodio/metabolismo , Furina/metabolismo , Homeostasis , Humanos , Pulmón/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Proteínas Virales/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281190

RESUMEN

Oxytocin and vasopressin secretion from the posterior pituitary gland are required for normal pregnancy and lactation. Oxytocin secretion is relatively low and constant under basal conditions but becomes pulsatile during birth and lactation to stimulate episodic contraction of the uterus for delivery of the fetus and milk ejection during suckling. Vasopressin secretion is maintained in pregnancy and lactation despite reduced osmolality (the principal stimulus for vasopressin secretion) to increase water retention to cope with the cardiovascular demands of pregnancy and lactation. Oxytocin and vasopressin secretion are determined by the action potential (spike) firing of magnocellular neurosecretory neurons of the hypothalamic supraoptic and paraventricular nuclei. In addition to synaptic input activity, spike firing depends on intrinsic excitability conferred by the suite of channels expressed by the neurons. Therefore, we analysed oxytocin and vasopressin neuron activity in anaesthetised non-pregnant, late-pregnant, and lactating rats to test the hypothesis that intrinsic excitability of oxytocin and vasopressin neurons is increased in late pregnancy and lactation to promote oxytocin and vasopressin secretion required for successful pregnancy and lactation. Hazard analysis of spike firing revealed a higher incidence of post-spike hyperexcitability immediately following each spike in oxytocin neurons, but not in vasopressin neurons, in late pregnancy and lactation, which is expected to facilitate high frequency firing during bursts. Despite lower osmolality in late-pregnant and lactating rats, vasopressin neuron activity was not different between non-pregnant, late-pregnant, and lactating rats, and blockade of osmosensitive ΔN-TRPV1 channels inhibited vasopressin neurons to a similar extent in non-pregnant, late-pregnant, and lactating rats. Furthermore, supraoptic nucleus ΔN-TRPV1 mRNA expression was not different between non-pregnant and late-pregnant rats, suggesting that sustained activity of ΔN-TRPV1 channels might maintain vasopressin neuron activity to increase water retention during pregnancy and lactation.


Asunto(s)
Núcleo Basal de Meynert/metabolismo , Oxitocina/metabolismo , Vasopresinas/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Núcleo Basal de Meynert/patología , Femenino , Hipotálamo/metabolismo , Lactancia/metabolismo , Lactancia/fisiología , Eyección Láctea/efectos de los fármacos , Neuronas/metabolismo , Oxitocina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Embarazo , Ratas , Núcleo Supraóptico/metabolismo , Vasopresinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...