Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Microbiol Biol Educ ; 24(1)2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37089240

RESUMEN

Social media has the power to spread information faster than any other news source. The science community has experienced this firsthand during recent years, unfortunately to its detriment. When scientific and medical claims are made without responsible examination of scientific evidence, misinformation is allowed to spread. While all users are likely faced with misleading claims on social media, this is especially troublesome for young adults. As the most prevalent users, many in this age group have never known a time without social media. Educators have an opportunity to use social media as a real-world application to teach students how to critically analyze scientific and medical information. The Social Media Reflection Assignment (SMRA) was created to help students develop such scientific literacy skills. This intervention requires students to find social media posts that make scientific claims, citing published scientific data. Students locate the corresponding research article and describe the results in their own words. Finally, a comparison is drawn between scientific findings in the research article and the interpretation described in the social media post. Students are taught to judge whether social media claims are supported by the scientific evidence. This activity is adaptable and applicable in a variety of classroom settings, from upper-level majors courses to science courses for nonmajors to disciplines outside the sciences. Importantly, the SMRA helps students question claims in social media while training them to find and elucidate answers from reliable resources.

2.
J Virol ; 97(1): e0144222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36541803

RESUMEN

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Asunto(s)
Encefalitis Viral , Neuronas , Infecciones por Reoviridae , Reoviridae , Animales , Ratones , Apoptosis/genética , Apoptosis/inmunología , Quimiocinas/inmunología , Encefalitis Viral/inmunología , Encefalitis Viral/virología , Neuronas/inmunología , FN-kappa B/genética , FN-kappa B/metabolismo , Reoviridae/inmunología , Reoviridae/patogenicidad , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
3.
Cell Host Microbe ; 29(6): 1014-1029.e8, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33894129

RESUMEN

The contributions of the viral component of the microbiome-the virome-to the development of innate and adaptive immunity are largely unknown. Here, we systematically defined the host response in mice to a panel of eukaryotic enteric viruses representing six different families. Infections with most of these viruses were asymptomatic in the mice, the magnitude and duration of which was dependent on the microbiota. Flow cytometric and transcriptional profiling of mice mono-associated with these viruses unveiled general adaptations by the host, such as lymphocyte differentiation and IL-22 signatures in the intestine, as well as numerous viral-strain-specific responses that persisted. Comparison with a dataset derived from analogous bacterial mono-association in mice identified bacterial species that evoke an immune response comparable with the viruses we examined. These results expand an understanding of the immune space occupied by the enteric virome and underscore the importance of viral exposure events.


Asunto(s)
Citocinas/metabolismo , Infecciones por Enterovirus/inmunología , Microbioma Gastrointestinal , Inmunidad , Transcriptoma , Viroma , Virus/inmunología , Animales , Infecciones Asintomáticas , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Intestinos/inmunología , Intestinos/virología , Ratones , Ratones Endogámicos C57BL , Simbiosis , Linfocitos T/metabolismo
4.
Cell Host Microbe ; 24(5): 677-688.e5, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30392830

RESUMEN

Intestinal reovirus infection can trigger T helper 1 (TH1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces TH1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant. Transcriptional profiling of mesenteric lymph nodes following infection reveals an immunopathological signature that does not segregate with protective immunity but with loss of oral tolerance, in which interferon regulatory factor 1 is critical. These data show that viral capacity to trigger specific inflammatory pathways at sites where T cell responses to dietary antigens take place interferes with the development of tolerance to an oral antigen. Collectively, these data provide a foundation for the development of therapeutic strategies to prevent TH1-mediated complex immune disorders triggered by viral infections.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Dieta , Norovirus/inmunología , Norovirus/patogenicidad , Ovalbúmina/inmunología , Células TH1/inmunología , Administración Oral , Animales , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/inmunología , Enfermedad Celíaca/inmunología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Inmunidad , Inflamación , Factor 1 Regulador del Interferón/inmunología , Ganglios Linfáticos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/administración & dosificación , Esparcimiento de Virus
6.
J Virol ; 92(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29514905

RESUMEN

Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


Asunto(s)
Apoptosis/inmunología , Células Epiteliales/inmunología , Mucosa Intestinal/inmunología , Orthoreovirus Mamífero 3/inmunología , Orthoreovirus de los Mamíferos/inmunología , Infecciones por Reoviridae/inmunología , Animales , Antígenos Virales/inmunología , Línea Celular , Cricetinae , Células Epiteliales/patología , Células Epiteliales/virología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Ratones , Infecciones por Reoviridae/patología
7.
Pediatr Res ; 83(5): 1057-1066, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29364865

RESUMEN

BackgroundInfants and young children are particularly susceptible to viral encephalitis; however, the mechanisms are unknown. We determined the age-dependent contribution of innate and adaptive immune functions to reovirus-induced encephalitis in mice.MethodsNewborn wild-type mice, 2-20 days of age, were inoculated with reovirus or diluent and monitored for mortality, weight gain, and viral load. Four- and fifteen-day-old IFNAR-/- and RAG2-/- mice were inoculated with reovirus and similarly monitored.ResultsWeight gain was impaired in mice inoculated with reovirus at 8 days of age or less. Clinical signs of encephalitis were detected in mice inoculated at 10 days of age or less. Mortality decreased when mice were inoculated after 6 days of age. Survival was ≤15% in wild type (WT), RAG2-/-, and IFNAR-/- mice inoculated at 4 days of age. All WT mice, 92% of RAG2-/- mice, and only 48% of IFNAR-/- mice survived following inoculation at 15 days of age.ConclusionsSusceptibility of mice to reovirus-induced disease decreases between 6 and 8 days of age. Enhanced reovirus virulence in IFNAR-/- mice relative to WT and RAG2-/- mice inoculated at 15 days of age suggests that maturation of the type-I interferon response contributes to age-related mortality following reovirus infection.


Asunto(s)
Factores de Edad , Proteínas de Unión al ADN/genética , Encefalitis Viral/inmunología , Receptor de Interferón alfa y beta/genética , Infecciones por Reoviridae/inmunología , Inmunidad Adaptativa , Animales , Apoptosis , Encéfalo/metabolismo , Línea Celular , Proteínas de Unión al ADN/inmunología , Regulación Viral de la Expresión Génica , Inmunidad Innata , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/fisiología , Receptor de Interferón alfa y beta/inmunología , Bazo/metabolismo , Carga Viral , Replicación Viral
8.
Science ; 356(6333): 44-50, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28386004

RESUMEN

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.


Asunto(s)
Antígenos/inmunología , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/virología , Glútenes/inmunología , Inflamación/virología , Infecciones por Reoviridae/complicaciones , Infecciones por Reoviridae/inmunología , Células TH1/inmunología , Animales , Dieta/efectos adversos , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Tolerancia Inmunológica , Inflamación/inmunología , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Intestinos/inmunología , Intestinos/patología , Intestinos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor de Interferón alfa y beta/genética , Reoviridae/genética
9.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077655

RESUMEN

Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1 We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity.IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1-/- mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections.


Asunto(s)
Células Epiteliales/metabolismo , Norovirus/fisiología , Orthoreovirus de los Mamíferos/fisiología , Receptores de Interferón/metabolismo , Animales , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/virología , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Inmunidad Innata , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestino Grueso/inmunología , Intestino Grueso/metabolismo , Intestino Grueso/virología , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Intestino Delgado/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/virología , Esparcimiento de Virus
10.
Am J Physiol Endocrinol Metab ; 311(5): E859-E868, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624103

RESUMEN

Numerous compounds stimulate rodent ß-cell proliferation; however, translating these findings to human ß-cells remains a challenge. To examine human ß-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human ß-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled ß-cells with high specificity using both nuclear and cytoplasmic markers. ß-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1ß signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67+ ß-cells, whereas treatment with other compounds had limited to no effect on human ß-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human ß-cell proliferation, thus allowing for increased testing of candidate human ß-cell mitogens.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Activinas/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Adenosina-5'-(N-etilcarboxamida)/farmacología , Adulto , Automatización , Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Eritropoyetina/farmacología , Exenatida , Femenino , GABAérgicos/farmacología , Harmina/farmacología , Humanos , Incretinas/farmacología , Masculino , Persona de Mediana Edad , Inhibidores de la Monoaminooxidasa/farmacología , Miostatina/farmacología , Nucleósidos/farmacología , Péptidos/farmacología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Prolactina/farmacología , Regeneración/efectos de los fármacos , Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Vasodilatadores/farmacología , Ponzoñas/farmacología , Adulto Joven , Ácido gamma-Aminobutírico/farmacología
11.
PLoS One ; 11(1): e0147252, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26771188

RESUMEN

Microsomal triglyceride transfer protein (MTP) is essential for the assembly of triglyceride-rich apolipoprotein B-containing lipoproteins. Previous studies in our laboratory identified a novel splice variant of MTP in mice that we named MTP-B. MTP-B has a unique first exon (1B) located 2.7 kB upstream of the first exon (1A) for canonical MTP (MTP-A). The two mature isoforms, though nearly identical in sequence and function, have different tissue expression patterns. In this study we report the identification of a second MTP splice variant (MTP-C), which contains both exons 1B and 1A. MTP-C is expressed in all the tissues we tested. In cells transfected with MTP-C, protein expression was less than 15% of that found when the cells were transfected with MTP-A or MTP-B. In silico analysis of the 5'-UTR of MTP-C revealed seven ATGs upstream of the start site for MTP-A, which is the only viable start site in frame with the main coding sequence. One of those ATGs was located in the 5'-UTR for MTP-A. We generated reporter constructs in which the 5'-UTRs of MTP-A or MTP-C were inserted between an SV40 promoter and the coding sequence of the luciferase gene and transfected these constructs into HEK 293 cells. Luciferase activity was significantly reduced by the MTP-C 5'-UTR, but not by the MTP-A 5'-UTR. We conclude that alternative splicing plays a key role in regulating MTP expression by introducing unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP levels and activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Empalme Alternativo/genética , Animales , Células CHO , Proteínas Portadoras/genética , Cricetulus , Electroforesis en Gel de Poliacrilamida , Femenino , Células HEK293 , Humanos , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
PLoS Pathog ; 11(3): e1004693, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738608

RESUMEN

Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/metabolismo , Animales , Ratones , Mutación/genética , Virión/metabolismo , Ensamble de Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA