Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Health Insights ; 11: 1178630217746997, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29270018

RESUMEN

Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while "in use" focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells.

2.
J Asthma ; 51(6): 585-94, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24555523

RESUMEN

OBJECTIVE: Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. METHODS: We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used "each pass removal efficiency" applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. RESULTS: Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. CONCLUSIONS: The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients.


Asunto(s)
Filtros de Aire , Contaminación del Aire Interior/prevención & control , Alérgenos/análisis , Asma/prevención & control , Exposición a Riesgos Ambientales/prevención & control , Ventilación , Contaminación del Aire Interior/análisis , Animales , Gatos , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Virus
3.
Environ Sci Technol ; 43(13): 5028-34, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19673302

RESUMEN

This analysis examines differences between measured ambient indoor, and personal sulfate concentrations across cities, seasons, and individuals to elucidate how these differences may impact PM2.5 exposure measurement error. Data were analyzed from four panel studies conducted in Atlanta, Baltimore, Boston, and Steubenville (OH). Among the study locations, 1912 person-days of personal sulfate data were collected over 396 days involving 245 individual sampling sessions. Long-term differences in ambient and personal levels averaged over time are examined. Differences between averaged ambient and personal sulfate among and within cities were observed, driven by between subject and city differences in sulfate infiltration, F(inf), from outdoors to indoors. Neglecting this source of variability in associations may introduce bias in studies examining long-term exposures and chronic health. Indoor sulfate was highly correlated with and similar in magnitude to personal sulfate, suggesting indoor PM monitoring may be another means of characterizing true exposure variability.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis , Sulfatos/análisis , Contaminación del Aire Interior/análisis , Baltimore , Boston , Ciudades , Monitoreo del Ambiente/métodos , Georgia , Humanos , Ohio , Tamaño de la Partícula , Análisis de Regresión , Estaciones del Año , Estados Unidos
4.
Sci Total Environ ; 407(12): 3754-65, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19285709

RESUMEN

Previous exposure studies have shown considerable inter-subject variability in personal-ambient associations. This paper investigates exposure factors that may be responsible for inter-subject variability in these personal-ambient associations. The personal and ambient data used in this paper were collected as part of a personal exposure study conducted in Boston, MA, during 1999-2000. This study was one of a group of personal exposure panel studies funded by the U.S. Environmental Protection Agency's National Exposure Research Laboratory to address areas of exposure assessment warranting further study, particularly associations between personal exposures and ambient concentrations of particulate matter and gaseous co-pollutants. Twenty-four-hour integrated personal, home indoor, home outdoor and ambient sulfate, elemental carbon (EC), PM(2.5), ozone (O(3)), nitrogen dioxide (NO(2)) and sulfur dioxide were measured simultaneously each day. Fifteen homes in the Boston area were measured for 7 days during winter and summer. A previous paper explored the associations between personal-indoor, personal-outdoor, personal-ambient, indoor-outdoor, indoor-ambient and outdoor-ambient PM(2.5), sulfate and EC concentrations. For the current paper, factors that may affect personal exposures were investigated, while controlling for ambient concentrations. The data were analyzed using mixed effects regression models. Overall personal-ambient associations were strong for sulfate during winter (p<0.0001) and summer (p<0.0001) and PM(2.5) during summer (p<0.0001). The personal-ambient mixed model slope for PM(2.5) during winter but was not significant at p=0.10. Personal exposures to most pollutants, with the exception of NO(2), increased with ventilation and time spent outdoors. An opposite pattern was found for NO(2) likely due to gas stoves. Personal exposures to PM(2.5) and to traffic-related pollutants, EC and NO(2), were higher for those individuals living close to a major road. Both personal and indoor sulfate and PM(2.5) concentrations were higher for homes using humidifiers. The impact of outdoor sources on personal and indoor concentrations increased with ventilation, whereas an opposite effect was observed for the impact of indoor sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Monitoreo del Ambiente , Vivienda/estadística & datos numéricos , Humanos , Exposición por Inhalación , Estaciones del Año
5.
J Air Waste Manag Assoc ; 58(8): 994-1003, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18720649

RESUMEN

Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Material Particulado/análisis , Interpretación Estadística de Datos , Elementos Químicos , Monitoreo del Ambiente , Kuwait , Control de Calidad , Estaciones del Año
6.
J Environ Monit ; 10(9): 1041-51, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18728896

RESUMEN

Despite strong longitudinal associations between particle personal exposures and ambient concentrations, previous studies have found considerable inter-personal variability in these associations. Factors contributing to this inter-personal variability are important to identify in order to improve our ability to assess particulate exposures for individuals. This paper examines whether ambient, home outdoor and home indoor particle concentrations can be used as proxies of corresponding personal exposures. We explore the strength of the associations between personal, home indoor, home outdoor and central outdoor monitoring site ("ambient site") concentrations of sulfate, fine particle mass (PM(2.5)) and elemental carbon (EC) by season and subject for 25 individuals living in the Boston, MA, USA area. Ambient sulfate concentrations accounted for approximately 70 to 80% of the variability in personal and indoor sulfate levels. Correlations between ambient and personal sulfate, however, varied by subject (0.1-1.0), with associations between personal and outdoor sulfate concentrations generally mirroring personal-ambient associations (median subject-specific correlations of 0.8 to 0.9). Ambient sulfate concentrations are good indicators of personal exposures for individuals living in the Boston area, even though their levels may differ from actual personal exposures. The strong associations for sulfate indicate that ambient concentrations and housing characteristics are the driving factors determining personal sulfate exposures. Ambient PM(2.5) and EC concentrations were more weakly associated with corresponding personal and indoor levels, as compared to sulfate. For EC and PM(2.5), local traffic, indoor sources and/or personal activities can significantly weaken associations with ambient concentrations. Infiltration was shown to impact the ability of ambient concentrations to reflect exposures with higher exposures to particles from ambient sources during summer. In contrast in the winter, lower infiltration can result in a greater contribution of indoor sources to PM(2.5) and EC exposures. Placing EC monitors closer to participants' homes may reduce exposure error in epidemiological studies of traffic-related particles, but this reduction in exposure error may be greater in winter than summer. It should be noted that approximately 20% of the EC data were below the field limit of detection, making it difficult to determine if the weaker associations with the central site for EC were merely a result of methodological limitations.


Asunto(s)
Contaminación del Aire Interior , Exposición a Riesgos Ambientales , Vivienda , Boston , Tamaño de la Partícula , Encuestas y Cuestionarios
7.
Res Rep Health Eff Inst ; (131): 1-65; discussion 67-75, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16541849

RESUMEN

Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated. No difference in infiltration factor was found among the cohorts, which suggests that all subjects were exposed to the same fraction of ambient PM2.5 for a given ambient concentration. In addition, the results show significant correlations between ambient PM2.5 concentrations and corresponding personal exposures over time and provide further indication that ambient gaseous pollutant concentrations may be better surrogates for personal PM2.5 exposures, especially personal exposures to PM2.5 of ambient origin, than their respective personal exposures. These results have important implications for PM health effects studies that use regression models including both ambient PM2.5 and gaseous pollutant concentrations as independent variables, because both parameters may be serving as surrogates for PM2.5 exposures.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Enfermedades Respiratorias/etiología , Adolescente , Anciano , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire Interior/análisis , Baltimore , Boston , Carbono/análisis , Niño , Estudios de Cohortes , Susceptibilidad a Enfermedades , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Tamaño de la Partícula , Enfermedad Pulmonar Obstructiva Crónica , Análisis de Regresión , Características de la Residencia , Estaciones del Año , Sulfatos/análisis , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...