Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Neurobiol Dis ; 127: 492-501, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30953760

RESUMEN

Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either Parkinson's disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Enfermedad por Cuerpos de Lewy/genética , Bases de Datos Genéticas , Humanos
2.
Neurobiol Aging ; 75: 223.e1-223.e10, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30448004

RESUMEN

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad por Cuerpos de Lewy/genética , Proteínas Oncogénicas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano de 80 o más Años , Femenino , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple/genética
3.
Neurobiol Aging ; 66: 179.e17-179.e29, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29544907

RESUMEN

Mendelian adult-onset leukodystrophies are a spectrum of rare inherited progressive neurodegenerative disorders affecting the white matter of the central nervous system. Among these, cerebral autosomal dominant and recessive arteriopathy with subcortical infarcts and leukoencephalopathy, cerebroretinal vasculopathy, metachromatic leukodystrophy, hereditary diffuse leukoencephalopathy with spheroids, and vanishing white matter disease present with rapidly progressive dementia as dominant feature and are caused by mutations in NOTCH3, HTRA1, TREX1, ARSA, CSF1R, EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5, respectively. Given the rare incidence of these disorders and the lack of unequivocally diagnostic features, leukodystrophies are frequently misdiagnosed with common sporadic dementing diseases such as Alzheimer's disease (AD), raising the question of whether these overlapping phenotypes may be explained by shared genetic risk factors. To investigate this intriguing hypothesis, we have combined gene expression analysis (1) in 6 different AD mouse strains (APPPS1, HOTASTPM, HETASTPM, TPM, TAS10, and TAU) at 5 different developmental stages (embryo [E15], 2, 4, 8, and 18 months), (2) in APPPS1 primary cortical neurons under stress conditions (oxygen-glucose deprivation) and single-variant-based and single-gene-based (c-alpha test and sequence kernel association test (SKAT)) genetic screening in a cohort composed of 332 Caucasian late-onset AD patients and 676 Caucasian elderly controls. Csf1r was significantly overexpressed (log2FC > 1, adj. p-value < 0.05) in the cortex and hippocampus of aged HOTASTPM mice with extensive Aß dense-core plaque pathology. We identified 3 likely pathogenic mutations in CSF1R TK domain (p.L868R, p.Q691H, and p.H703Y) in our discovery and validation cohort, composed of 465 AD and mild cognitive impairment (MCI) Caucasian patients from the United Kingdom. Moreover, NOTCH3 was a significant hit in the c-alpha test (adj p-value = 0.01). Adult-onset Mendelian leukodystrophy genes are not common factors implicated in AD. Nevertheless, our study suggests a potential pathogenic link between NOTCH3, CSF1R, and sporadic late-onset AD, which warrants further investigation.


Asunto(s)
Enfermedad de Alzheimer/genética , Estudios de Asociación Genética , Leucodistrofia Metacromática/genética , Mutación , Receptor Notch3/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Corteza Cerebral/metabolismo , Estudios de Cohortes , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Factores de Riesgo , Población Blanca
4.
Lancet Neurol ; 17(1): 64-74, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263008

RESUMEN

BACKGROUND: Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson's disease, and Alzheimer's disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. METHODS: In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected after participant examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also only in participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. FINDINGS: This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14-2·70; p=1·05 × 10-48), SNCA (rs7681440; OR 0·73, 0·66-0·81; p=6·39 × 10-10), an GBA (rs35749011; OR 2·55, 1·88-3·46; p=1·78 × 10-9). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27-1·79; p=2·32 × 10-6); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. INTERPRETATION: Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease. FUNDING: The Alzheimer's Society and the Lewy Body Society.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Enfermedad por Cuerpos de Lewy/genética , Estudios de Cohortes , Humanos
5.
Neurobiol Aging ; 49: 214.e13-214.e15, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27666590

RESUMEN

C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that C9orf72 repeat expansions are not causally associated with DLB.


Asunto(s)
Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Estudios de Asociación Genética , Enfermedad por Cuerpos de Lewy/genética , Estudios de Cohortes , Humanos
6.
PLoS One ; 11(6): e0150079, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27249223

RESUMEN

The cerebral deposition of Aß42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer's disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4

Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Biología Computacional , Exoma , Humanos
7.
Neurobiol Aging ; 46: 235.e1-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27289440

RESUMEN

Genome-wide association studies (GWASs) have been effective approaches to dissect common genetic variability underlying complex diseases in a systematic and unbiased way. Recently, GWASs have led to the discovery of over 20 susceptibility loci for Alzheimer's disease (AD). Despite the evidence showing the contribution of these loci to AD pathogenesis, their genetic architecture has not been extensively investigated, leaving the possibility that low frequency and rare coding variants may also occur and contribute to the risk of disease. We have used exome and genome sequencing data to analyze the single independent and joint effect of rare and low-frequency protein coding variants in 9 AD GWAS loci with the strongest effect sizes after APOE (BIN1, CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, and CD2AP) in a cohort of 332 sporadic AD cases and 676 elderly controls of British and North-American ancestry. We identified coding variability in ABCA7 as contributing to AD risk. This locus harbors a low-frequency coding variant (p.G215S, rs72973581, minor allele frequency = 4.3%) conferring a modest but statistically significant protection against AD (p-value = 0.024, odds ratio = 0.57, 95% confidence interval = 0.41-0.80). Notably, our results are not driven by an enrichment of loss of function variants in ABCA7, recently reported as main pathogenic factor underlying AD risk at this locus. In summary, our study confirms the role of ABCA7 in AD and provides new insights that should address functional studies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Riesgo
8.
Neurobiol Aging ; 38: 214.e7-214.e10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26643944

RESUMEN

The similarities between dementia with Lewy bodies (DLB) and both Parkinson's disease (PD) and Alzheimer's disease (AD) are many and range from clinical presentation, to neuropathological characteristics, to more recently identified, genetic determinants of risk. Because of these overlapping features, diagnosing DLB is challenging and has clinical implications since some therapeutic agents that are applicable in other diseases have adverse effects in DLB. Having shown that DLB shares some genetic risk with PD and AD, we have now quantified the amount of sharing through the application of genetic correlation estimates, and show that, from a purely genetic perspective, and excluding the strong association at the APOE locus, DLB is equally correlated to AD and PD.


Asunto(s)
Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Apolipoproteínas E/genética , Estudios de Cohortes , Sitios Genéticos/genética , Humanos
9.
Neurobiol Aging ; 35(12): 2881.e1-2881.e6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25104557

RESUMEN

The overlapping clinical and neuropathologic features between late-onset apparently sporadic Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease) raise the question of whether shared genetic risk factors may explain the similar phenotype among these disparate disorders. To investigate this intriguing hypothesis, we analyzed rare coding variability in 6 Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP), in 141 LOAD patients and 179 elderly controls, neuropathologically proven, from the UK. In our cohort, 14 LOAD cases (10%) and 11 controls (6%) carry at least 1 rare variant in the genes studied. We report a novel variant in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), absent in controls and both likely pathogenic. Our findings support previous studies, suggesting that (1) rare coding variability in PSEN1 and PSEN2 may influence the susceptibility for LOAD and (2) GRN, MAPT, and PRNP are not major contributors to LOAD. Thus, genetic screening is pivotal for the clinical differential diagnosis of these neurodegenerative dementias.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Presenilina-1/genética , Presenilina-2/genética , Priones/genética , Proteínas tau/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Estudios de Cohortes , Demencia/diagnóstico , Demencia/genética , Diagnóstico Diferencial , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Proteínas Priónicas , Progranulinas
10.
Neurobiol Aging ; 35(10): 2422.e13-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24880964

RESUMEN

Early-onset Alzheimer's disease (EOAD) represents 1%-2% of the Alzheimer's disease (AD) cases, and it is generally characterized by a positive family history and a rapidly progressive symptomatology. Rare coding and fully penetrant variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are the only causative mutations reported for autosomal dominant AD. Thus, in this study we used exome sequencing data to rapidly screen rare coding variability in APP, PSEN1, and PSEN2, in a British cohort composed of 47 unrelated EOAD cases and 179 elderly controls, neuropathologically proven. We report 2 novel and likely pathogenic variants in PSEN1 (p.L166V and p.S230R). A comprehensive catalog of rare pathogenic variants in the AD Mendelian genes is pivotal for a premortem diagnosis of autosomal dominant EOAD and for the differential diagnosis with other early onset dementias such as frontotemporal dementia (FTD) and Creutzfeldt-Jakob disease (CJD).


Asunto(s)
Enfermedad de Alzheimer/genética , Exoma/genética , Estudios de Asociación Genética , Mutación/genética , Presenilina-1/genética , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Precursor de Proteína beta-Amiloide/genética , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Genes Dominantes/genética , Humanos , Masculino , Persona de Mediana Edad , Presenilina-2/genética , Análisis de Secuencia de ADN , Reino Unido
11.
Hum Mol Genet ; 23(23): 6139-46, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973356

RESUMEN

Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.


Asunto(s)
Apolipoproteínas E/genética , Enfermedad por Cuerpos de Lewy/etiología , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/patología , Receptores Depuradores/genética , alfa-Sinucleína/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/patología , Masculino , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Factores de Riesgo
12.
Neurobiol Aging ; 35(6): 1510.e19-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24439484

RESUMEN

TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on chromosome 6p21.11. Recent studies have identified a rare coding variant (p.R47H) in TREM2 that confers a high risk for Alzheimer's disease (AD). In addition, common single nucleotide polymorphisms in this genomic region are associated with cerebrospinal fluid biomarkers for AD and a common intergenic variant found near the TREML2 gene has been identified to be protective for AD. However, little is known about the functional variant underlying the latter association or its relationship with the p.R47H. Here, we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support the role of the TREML2 coding missense variant p.S144G (rs3747742) as a potential driver of the meta-analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Mutación Missense/genética , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/prevención & control , Biomarcadores/líquido cefalorraquídeo , Cromosomas Humanos Par 6 , Humanos , Metaanálisis como Asunto , Polimorfismo de Nucleótido Simple/genética , Receptores Inmunológicos/fisiología , Riesgo
13.
Nature ; 505(7484): 550-554, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24336208

RESUMEN

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-ß precursor protein (APP) and extracellular Aß42 and Aß40 (the 42- and 40-residue isoforms of the amyloid-ß peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aß42 and Aß40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Fosfolipasa D/genética , Negro o Afroamericano/genética , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Estudios de Casos y Controles , Europa (Continente)/etnología , Exoma/genética , Femenino , Humanos , Masculino , Fragmentos de Péptidos/metabolismo , Fosfolipasa D/deficiencia , Fosfolipasa D/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteolisis
14.
Eur J Hum Genet ; 22(2): 216-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23736221

RESUMEN

Epistasis between interleukin-10 (IL10) and aromatase gene polymorphisms has previously been reported to modify the risk of Alzheimer's disease (AD). However, although the main effects of aromatase variants suggest a sex-specific effect in AD, there has been insufficient power to detect sex-specific epistasis between these genes to date. Here we used the cohort of 1757 AD patients and 6294 controls in the Epistasis Project. We replicated the previously reported main effects of aromatase polymorphisms in AD risk in women, for example, adjusted odds ratio of disease for rs1065778 GG=1.22 (95% confidence interval: 1.01-1.48, P=0.03). We also confirmed a reported epistatic interaction between IL10 rs1800896 and aromatase (CYP19A1) rs1062033, again only in women: adjusted synergy factor=1.94 (1.16-3.25, 0.01). Aromatase, a rate-limiting enzyme in the synthesis of estrogens, is expressed in AD-relevant brain regions ,and is downregulated during the disease. IL-10 is an anti-inflammatory cytokine. Given that estrogens have neuroprotective and anti-inflammatory activities and regulate microglial cytokine production, epistasis is biologically plausible. Diminishing serum estrogen in postmenopausal women, coupled with suboptimal brain estrogen synthesis, may contribute to the inflammatory state, that is a pathological hallmark of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Aromatasa/genética , Interleucina-10/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/enzimología , Estudios de Casos y Controles , Epistasis Genética , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Masculino , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Riesgo , Caracteres Sexuales
15.
Neurobiol Aging ; 34(4): 1309.e1-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23036584

RESUMEN

Despite recent discoveries in the genetics of sporadic Alzheimer's disease, there remains substantial "hidden heritability." It is thought that some of this missing heritability may be because of gene-gene, i.e., epistatic, interactions. We examined potential epistasis between 110 candidate polymorphisms in 1757 cases of Alzheimer's disease and 6294 control subjects of the Epistasis Project, divided between a discovery and a replication dataset. We found an epistatic interaction, between rs7483 in GSTM3 and rs1111875 in the HHEX/IDE/KIF11 gene cluster, with a closely similar, significant result in both datasets. The synergy factor (SF) in the combined dataset was 1.79, 95% confidence interval [CI], 1.35-2.36; p = 0.00004. Consistent interaction was also found in 7 out of the 8 additional subsets that we examined post hoc: i.e., it was shown in both North Europe and North Spain, in both men and women, in both those with and without the ε4 allele of apolipoprotein E, and in people older than 75 years (SF, 2.27; 95% CI, 1.60-3.20; p < 0.00001), but not in those younger than 75 years (SF, 1.06; 95% CI, 0.59-1.91; p = 0.84). The association with Alzheimer's disease was purely epistatic with neither polymorphism showing an independent effect: odds ratio, 1.0; p ≥ 0.7. Indeed, each factor was associated with protection in the absence of the other factor, but with risk in its presence. In conclusion, this epistatic interaction showed a high degree of consistency when stratifying by sex, the ε4 allele of apolipoprotein E genotype, and geographic region.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Glutatión Transferasa/genética , Proteínas de Homeodominio/genética , Insulisina/genética , Cinesinas/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/genética , Anciano , Anciano de 80 o más Años , Mapeo Cromosómico , Epistasis Genética/genética , Europa (Continente)/epidemiología , Femenino , Sitios Genéticos/genética , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/estadística & datos numéricos , Humanos , Masculino , Prevalencia , Factores de Riesgo
16.
Int J Mol Epidemiol Genet ; 3(4): 262-75, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23205178

RESUMEN

CLU, PICALM and CR1 were identified as genetic risk factors for late onset Alzheimer's disease (AD) in two large genome wide association studies (GWAS) published in 2009, but the variants that convey this alteration in disease risk, and how the genes relate to AD pathology is yet to be discovered. A next generation sequencing (NGS) project was conducted targeting CLU, CR1 and PICALM, in 96 AD samples (8 pools of 12), in an attempt to discover rare variants within these AD associated genes. Inclusion of repetitive regions in the design of the SureSelect capture lead to significant issues in alignment of the data, leading to poor specificity and a lower than expected depth of coverage. A strong positive correlation (0.964, p<0.001) was seen between NGS and 1000 genome project frequency estimates. Of the ~170 "novel" variants detected in the genes, seven SNPs, all of which were present in multiple sample pools, were selected for validation by Sanger sequencing. Two SNPs were successfully validated by this method, and shown to be genuine variants, while five failed validation. These spurious SNP calls occurred as a result of the presence of small indels and mononucleotide repeats, indicating such features should be regarded with caution, and validation via an independent method is important for NGS variant calls.

17.
Int J Mol Epidemiol Genet ; 3(1): 39-47, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22493750

RESUMEN

OBJECTIVE: Neuroinflammation contributes to the pathogenesis of sporadic Alzheimer's disease (AD). Variations in genes relevant to inflammation may be candidate genes for AD risk. Whole-genome association studies have identified relevant new and known genes. Their combined effects do not explain 100% of the risk, genetic interactions may contribute. We investigated whether genes involved in inflammation, i.e. PPAR-α, interleukins (IL) IL- 1α, IL-1ß, IL-6, and IL-10 may interact to increase AD risk. METHODS: The Epistasis Project identifies interactions that affect the risk of AD. Genotyping of single nucleotide polymorphisms (SNPs) in PPARA, IL1A, IL1B, IL6 and IL10 was performed. Possible associations were analyzed by fitting logistic regression models with AD as outcome, controlling for centre, age, sex and presence of apolipoprotein ε4 allele (APOEε4). Adjusted synergy factors were derived from interaction terms (p<0.05 two-sided). RESULTS: We observed four significant interactions between different SNPs in PPARA and in interleukins IL1A, IL1B, IL10 that may affect AD risk. There were no significant interactions between PPARA and IL6. CONCLUSIONS: In addition to an association of the PPARA L162V polymorphism with the AD risk, we observed four significant interactions between SNPs in PPARA and SNPs in IL1A, IL1B and IL10 affecting AD risk. We prove that gene-gene interactions explain part of the heritability of AD and are to be considered when assessing the genetic risk. Necessary replications will require between 1450 and 2950 of both cases and controls, depending on the prevalence of the SNP, to have 80% power to detect the observed synergy factors.

18.
Neurobiol Aging ; 33(8): 1849.e5-18, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22445811

RESUMEN

Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer's disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58-108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10(-4)), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Mapeo Cromosómico/estadística & datos numéricos , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Distribución por Edad , Variación Genética/genética , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Prevalencia
19.
Neurobiol Aging ; 33(1): 202.e1-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20817350

RESUMEN

Iron overload may contribute to the risk of Alzheimer's disease (AD). In the Epistasis Project, with 1757 cases of AD and 6295 controls, we studied 4 variants in 2 genes of iron metabolism: hemochromatosis (HFE) C282Y and H63D, and transferrin (TF) C2 and -2G/A. We replicated the reported interaction between HFE 282Y and TF C2 in the risk of AD: synergy factor, 1.75 (95% confidence interval, 1.1-2.8, p = 0.02) in Northern Europeans. The synergy factor was 3.1 (1.4-6.9; 0.007) in subjects with the APOEε4 allele. We found another interaction, between HFE 63HH and TF -2AA, markedly modified by age. Both interactions were found mainly or only in Northern Europeans. The interaction between HFE 282Y and TF C2 has now been replicated twice, in altogether 2313 cases of AD and 7065 controls, and has also been associated with increased iron load. We therefore suggest that iron overload may be a causative factor in the development of AD. Treatment for iron overload might thus be protective in some cases.


Asunto(s)
Enfermedad de Alzheimer/etiología , Epistasis Genética/genética , Antígenos de Histocompatibilidad Clase I/genética , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/genética , Proteínas de la Membrana/genética , Transferrina/genética , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Enfermedad de Alzheimer/prevención & control , Apolipoproteína E4/genética , Femenino , Proteína de la Hemocromatosis , Humanos , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/terapia , Masculino , Estrés Oxidativo/genética , Riesgo
20.
Neurobiol Aging ; 33(7): 1486.e1-2, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21232820

RESUMEN

Alzheimer's disease (AD) is generally considered to be a disorder primarily affecting memory. It is increasingly recognized that the clinical presentation or "cognitive phenotype" is variable. The apolipoprotein E ε4 (APOE ε4) allele has been associated with an amnestic presentation, but does not appear to fully explain the high prevalence of family history within this group. We examined polymorphisms in the genes ACE and IDE in relation to cognitive phenotype. In this study 276 participants with AD were categorized into 1 of 4 cognitive phenotype classifications: typical, amnestic, language, and posterior. Family history and possession of the APOE ε4 allele were most prevalent in the amnestic group. Of the 10 genetic variants of IDE, and the 3 genetic variants of ACE studied, only ACErs4291 and ACErs1800764 were nominally associated with the amnestic presentation.


Asunto(s)
Enfermedad de Alzheimer/genética , Trastornos del Conocimiento/genética , Variación Genética/genética , Insulisina/genética , Peptidil-Dipeptidasa A/genética , Fenotipo , Enfermedad de Alzheimer/diagnóstico , Trastornos del Conocimiento/diagnóstico , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...