Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1379301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646010

RESUMEN

The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.

2.
Microbiol Resour Announc ; 8(48)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776227

RESUMEN

Nannochloropsis oceanica strains BR2 and KB1 are microalgal isolates from brackish water in the Brisbane River and a coastal rock pool at the Sunshine Coast in Australia which display superior productivity at high temperatures. We used long-read sequencing to sequence their genomes and to facilitate elucidation of loci associated with these traits.

3.
Inorg Chem ; 43(21): 6707-16, 2004 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-15476370

RESUMEN

The tetramers of the group 11 (I) halides, M(4)X(4) (M = Cu, Ag, or Au; X = F, Cl, Br, or I), and corresponding group 11 (I) phosphanes, chloride and bromide (XMPH(3))(4) (X = Cl or Br), are investigated by the density functional theory. All coinage metal(I) halide tetramers adopt squarelike ring structures with an out-of-plane distorted (butterfly) D(2d) symmetry. These structures are much lower in energy than the more compact cubelike T(d) arrangements, which maximize dipole-dipole interactions and more closely resemble the solid-state structures of the copper and silver halides. Phosphine coordination completely changes the structures of these M(4)X(4) clusters. The copper(I) and silver(I) phosphane chloride and bromide tetramers adopt a heterocubane structure, slightly preferred over a step (ladder-type)-cluster structure well-known in the coordination chemistry of such compounds. In stark contrast, gold(I) phosphane chloride and bromide tetramers prefer assemblies of linear XAuPH(3) units with direct gold-gold contacts, resulting in a square planar, centered trigonal planar, or tetrahedral gold core.

5.
Chemistry ; 9(1): 327-33, 2003 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-12506389

RESUMEN

The molecular geometry of gaseous cuprous chloride oligomers was determined by gas-phase electron diffraction at two different temperatures. Quantum chemical calculations were also performed for Cu(n)Cl(n) (n=1-4) molecules. A complex vapor composition was found in both experiments. Molecules of Cu(3)Cl(3) and Cu(4)Cl(4) were present at the lower temperature (689 K), while dimeric molecules (Cu(2)Cl(2)) were found in addition to the trimers and tetramers at the higher temperature (1333 K). All Cu(n)Cl(n) species were found to have planar rings by both experiment and computation. The bond lengths from electron diffraction (r(g)) at 689 K are 2.166+/-0.008 A and 2.141+/-0.008 A and the Cu-Cl-Cu bond angles are 73.9+/-0.6 degrees and 88.0+/-0.6 degrees for the trimer and the tetramer, respectively. At 1333 K the bond lengths are 2.254+/-0.011 A, 2.180+/-0.011 A, and 2.155+/-0.011 A, and the Cu-Cl-Cu bond angles 67.3+/-1.1 degrees, 74.4+/-1.1 degrees, and 83.6+/-1.1 degrees for the dimer, trimer, and tetramer, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...