Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 191(1): 79-89, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36331340

RESUMEN

Asthma is a common chronic respiratory disease exacerbated by multiple environmental factors. Acute ozone exposure has previously been implicated in airway inflammation, airway hyperreactivity, and other characteristics of asthma, which may be attributable to altered sphingolipid metabolism. This study tested the hypothesis that acute ozone exposure alters sphingolipid metabolism within the lung, which contributes to exacerbations in characteristics of asthma in allergen-sensitized mice. Adult male and female BALB/c mice were sensitized intranasally to house dust mite (HDM) allergen on days 1, 3, and 5 and challenged on days 12-14. Mice were exposed to ozone following each HDM challenge for 6 h/day. Bronchoalveolar lavage, lung lobes, and microdissected lung airways were collected for metabolomics analysis (N = 8/sex/group). Another subset of mice underwent methacholine challenge using a forced oscillation technique to measure airway resistance (N = 6/sex/group). Combined HDM and ozone exposure in male mice synergistically increased airway hyperreactivity that was not observed in females and was accompanied by increased airway inflammation and eosinophilia relative to control mice. Importantly, glycosphingolipids were significantly increased following combined HDM and ozone exposure relative to controls in both male and female airways, which was also associated with both airway resistance and eosinophilia. However, 15 glycosphingolipid species were increased in females compared with only 6 in males, which was concomitant with significant associations between glycosphingolipids and airway resistance that ranged from R2 = 0.33-0.51 for females and R2 = 0.20-0.34 in male mice. These observed sex differences demonstrate that glycosphingolipids potentially serve to mitigate exacerbations in characteristics of allergic asthma.


Asunto(s)
Asma , Eosinofilia , Ozono , Femenino , Masculino , Animales , Ratones , Ozono/toxicidad , Líquido del Lavado Bronquioalveolar , Asma/inducido químicamente , Pulmón , Inflamación , Alérgenos/toxicidad , Esfingolípidos , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
2.
Regul Toxicol Pharmacol ; 116: 104761, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32768664

RESUMEN

4-Methylimidazole (4MEI) is a contaminant in food and consumer products. Pulmonary toxicity and carcinogenicity following chronic dietary exposures to 4MEI is a regulatory concern based on previous rodent studies. This study examined acute pulmonary toxicity in B6C3F1 mice from 6 h to 5 days after oral gavage with a single dose of 150 mg/kg 4MEI, a double dose delivered 6 h apart, or vehicle controls. Oral gavage of 150 mg/kg naphthalene, a prototypical Club cell toxicant, was used as a positive control. Intrapulmonary conducting airway cytotoxicity was assessed in fixed-pressure inflated lungs using qualitative histopathology scoring, quantitative morphometric measurement of vacuolated and exfoliating epithelial cells, and immunohistochemistry. 4MEI treatment did not change markers of cytotoxicity including the mass of vacuolated epithelium, the thickness of the epithelium, or the distributions of epithelial proteins: secretoglobin 1A1, proliferating cell nuclear antigen, calcitonin gene-related peptide, and myeloperoxidase. 4MEI and vehicle controls caused slight cytotoxicity with rare vacuolization of the epithelium relative to the severe bronchiolar epithelial cell toxicity found in the naphthalene exposed mice at terminal bronchioles, intrapulmonary airways, or airway bifurcations. In summary, 4MEI caused minimal airway epithelial toxicity without characteristic Club Cell toxicity when compared to naphthalene, a canonical Club Cell toxicant.


Asunto(s)
Contaminantes Ambientales/toxicidad , Imidazoles/toxicidad , Naftalenos/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Administración Oral , Animales , Femenino , Masculino , Ratones , Mucosa Respiratoria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...