RESUMEN
The therapy of neuroblastoma relies, amongst other things, on administering chemotherapeutics and radioactive compounds, e.g., the (meta-iodobenzyl)guanidine [131I]mIBG. For special applications (conditioning before stem cell transplantation), busulfan and melphalan (M) proved to be effective. However, both drugs are not used for normal chemotherapy in neuroblastoma because of their side effects. The alkylating drug melphalan contains a (Cl-CH2-CH2-)2N- group in the para-position of the phenyl moiety of the essential amino acid phenylalanine (Phe) and can, therefore, be taken up by virtually all kinds of cells by amino acid transporters. In contrast, mIBG isotopologs are taken up more selectively by neuroblastoma cells via the noradrenaline transporter (NAT). The present study aimed at synthesising and studying hybrid molecules of benzylguanidine (BG) and the alkylating motif of M. Such hybrids should combine the preferential uptake of BGs into neuroblastoma cells with the cytotoxicity of M. Besides the hybrid of BG with the dialkylating group (Cl-CH2-CH2-)2N- bound in the para-position as in M (pMBG), we also synthesised mMBG, which is BG meta-substituted by a (Cl-CH2-CH2-)2N- group. Furthermore, two monoalkylating hybrid molecules were synthesised: the BG para-substituted by a (Cl-CH2-CH2-)NH- group (pM*BG) and the BG meta-substituted by a (Cl-CH2-CH2-)NH- group (mM*BG). The effects of the four new compounds were studied with human neuroblastoma cell lines (SK-N-SH, Kelly, and LS) with regard to uptake, viability, and proliferation by standard test systems. The dialkylating hybrid molecules pMBG and mMBG were at least as effective as M, whereas the monoalkylating hybrid molecules pM*BG and mM*BG were more effective than M. Considering the preferred uptake via the noradrenaline transporter by neuroblastoma cells, we conclude that they might be well suited for therapy.
RESUMEN
Interferons (IFN), first described 1957 by Isaacs and Lindemann, are antiviral proteins generated in cells after viral infections. One of several interferon-induced effector mechanisms is the so called 2-5A / RNaseL system: Interferon is produced in the virus-affected cells and released. After binding to cell membrane receptors of adjacent cells, 2-5 A synthetase (oligoadenylate synthetase, OAS) is generated, attaches to dsRNA section areas of the viral RNA and catalyses the production of 2-5 oligoadenylates from ATP. In 2-5 oligoadenylates, several adenosine residues (3-4 and more) are combined via phosphodiester binding in the unusual 2'-5' positions of the riboses. 2-5 oligoadenylates activate a RNaseL which degrades the viral RNA. Recently, characteristic gene mutations and other disturbances concerning the interferon system were detected in patients with severe COVID-19, leading to problems of 2-5 oligoadenylate synthesis and the activation of RNAseL. In order to circumvent these problems, we hypothesize that a direct application of 2-5 oligoadenylates, included in an inhalation spray, may be effective in treatment of severe COVID-19 infections of the respiratory system. In contrast to some other anti-COVID-19 drugs, oligoadenylates act inside the cells (like e.g. Paxlovid) and are therefore independent of cell surface mutations of the virus. For confirmation of our hypothesis, proof of concept investigations in vitro are suggested, before a possible clinical application can be considered.
RESUMEN
Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency of arylsulfatase A (ARSA). Heterozygous carriers of disease-causing variants and individuals harbouring pseudodeficiency alleles in the ARSA gene exhibit reduced ARSA activity. In the context of these genotypes, low ARSA activity has been suggested to lead to an atypical form of MLD or other neurological abnormalities, but data are limited. The aim of our study was to analyse the impact of low ARSA activity in two subjects who are heterozygous for the ARSA pseudodeficiency allele and a disease-causing variant. Biochemical testing included ARSA activity measurements and urinary sulfatide analysis. Biochemical data of a large cohort of MLD patients, heterozygotes, pseudodeficient individuals and healthy controls were analysed. MRI was performed at 3T using T1- and T2-weighted sequences and MR spectroscopy. We present two long-term follow-ups who are heterozygous for the ARSA pseudodeficiency allele and a disease-causing variant in the ARSA gene in cis. The two related index cases exhibit markedly reduced ARSA activity compared to controls and heterozygous carriers. The neurological evaluation and MRI do not reveal any abnormalities. Our data underline that extremely low enzyme activity due to a pseudodeficiency allele and a disease-causing variant in the ARSA gene even in cis does not lead to clinical symptoms or pre-symptomatic MRI changes suspicious for MLD. The review of literature corroborates that any association of low ARSA activity with disease features remains questionable. It seems important to combine the measurement of ARSA activity with elevated sulfatide as well as genetic testing, as done in current newborn screening approaches. Heterozygosity for metachromatic leukodystrophy and an arylsulfatase A pseudodeficiency allele does not cause neurological or neuropsychiatric features.
RESUMEN
(1) Lysosomal storage diseases are rare inherited disorders with no standardized or commercially available tests for biochemical diagnosis. We present factors influencing the quality of enzyme assays for metachromatic leukodystrophy (MLD) and gangliosidoses (GM1; GM2 variants B and 0) and validate the reliability and stability of testing in a retrospective analysis of 725 samples. (2) Patient leukocytes were isolated from ethylene-diamine-tetra-acetic acid (EDTA) blood and separated for subpopulation experiments using density gradient centrifugation or magnetic cell separation. Enzyme activities in whole leukocyte lysate and leukocyte subpopulations were determined. (3) The enzyme activities in leukocyte subpopulations differed significantly. Compared to lymphocytes, the respective enzyme activities were 2.31-4.57-fold higher in monocytes and 1.64-2.81-fold higher in granulocytes. During sample preparation, a considerable amount of the lysosomal enzymes was released from granulocytes. Nevertheless, with the sample preparation method used here, total leukocyte count proved to be more accurate than total protein amount as a reference unit for enzyme activities. Subsequent analysis of 725 individuals showed clear discrimination of enzyme activities in patient samples (48 MLD; 21 gangliosidoses), with a sensitivity of 100% and specificity of 98-99%.
Asunto(s)
Gangliosidosis/diagnóstico , Gangliosidosis/enzimología , Leucocitos Mononucleares/metabolismo , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/enzimología , Pruebas de Enzimas/métodos , Granulocitos/enzimología , Humanos , Leucocitos Mononucleares/enzimología , Monocitos/enzimología , Estudios RetrospectivosRESUMEN
Introduction: An increase of serum dehydroepiandrosterone (DHEA) sulfate (DHEAS) is observed in premature adrenarche and congenital adrenal hyperplasia. Very high DHEAS levels are typical for adrenal tumors. Approximately 74% of DHEAS is hydrolyzed to DHEA by the steroid sulfatase (STS). The reverse reaction is DHEA sulfation. Besides these two enzyme reactions, the DHEAS transported through the cell membrane is important for its distribution and excretion. Case Presentation: We present a female adolescent with overweight and a very high DHEAS. The presence of a DHEAS-producing tumor was rejected using ultrasonography, Magnetic Resonance Tomography (MRT), and dexamethasone suppression. STS deficiency was suspected. Sequence analysis revealed a heterozygous nonsense mutation which predicts a truncation of the carboxyl region of the STS that is implicated in substrate binding. No partial gene deletion outside exon 5 was detected by multiplex ligation-dependent probe amplification. The bioassay revealed normal enzyme activity in the patient's leukocytes. A defect of transporter proteins was suggested. Both efflux [multidrug-resistance protein (MRP)2 and breast cancer-resistance protein (BCRP)] and uptake [organic anion-transporting polypeptide (OATP) and organic anion transporter (OAT) carriers] transporters were studied. Sequence analysis of exons revealed a heterozygous Q141K variant for BCRP. Conclusions: A novel heterozygous nonsense mutation in the STS gene and a known heterozygous missense variant in the BCRP gene were found. The heterozygous nonsense mutation in the STS gene is not supposed to be responsible for STS deficiency. The BCRP variant is associated with reduced efflux transport activity only in its homozygous state. The combination of the two heterozygous mutations could possibly explain the observed high levels of DHEAS and other sulfated steroids.
Asunto(s)
Codón sin Sentido , Sulfato de Deshidroepiandrosterona/sangre , Obesidad Infantil/patología , Esteril-Sulfatasa/genética , Adolescente , Estudios de Casos y Controles , Femenino , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Obesidad Infantil/sangre , Obesidad Infantil/genética , Pronóstico , Adulto JovenRESUMEN
Metachromatic Leukodystrophy (MLD) and Multiple Sulfatase Deficiency (MSD) are rare and ultra-rare lysosomal storage diseases. Due to enzyme defects, patients are unable to split the sulfategroup from the respective substrates. In MSD all sulfatases are affected due to a defect of the Sulfatase Modifying Factor 1 (SUMF1) gene coding for the formylglycine generating enzyme (FGE) necessary for the modification of the active site of sulfatases. In MLD mutations in the arylsulfatase A (ARSA) gene cause ARSA deficiency with subsequent accumulation of 3-sulfogalactocerebroside especially in oligodendrocytes. The clinical consequence is demyelination and a devastating neurological disease. Enzyme replacement therapy (ERT) with recombinant human arylsulfatase A (rhARSA), gene therapy, and stem cell transplantation are suggested as new therapeutic options. The aim of our study was to characterize rhARSA concerning its substrate specificity using analytical isotachophoresis (ITP). Substrate specificity could be demonstrated by sulfate splitting from the natural substrates 3-sulfogalactocerebroside and ascorbyl-2-sulfate and the artificial substrate p-nitrocatecholsulfate, whereas galactose-6-sulfate, a substrate of galactose-6sulfurylase, was totally resistant. In contrast, leukocyte extracts of healthy donors were able to split sulfate also from galactose-6-sulfate. The ITP method allows therefore a rapid and simple differentiation between samples of MLD and MSD patients and healthy donors. Therefore, the isotachophoretic diagnostic assay from leukocyte extracts described here provides a fast and efficient way for the diagnosis of MLD and MSD patients and an elegant system to differentiate between these diseases in one assay.
Asunto(s)
Cerebrósido Sulfatasa/química , Pruebas de Enzimas/métodos , Isotacoforesis/métodos , Leucocitos/enzimología , Leucodistrofia Metacromática/enzimología , Enfermedad por Deficiencia de Múltiples Sulfatasas/enzimología , Sulfatasas/química , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Humanos , Cinética , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismo , Sulfatos/química , Sulfatos/metabolismoRESUMEN
The catecholamine analogue [123 I]mIBG has been used for scintigraphic imaging of neuroblastoma since 1984. It is taken up by the noradrenaline transporter (NAT), which is present in most neuroblastoma cells. An alternative imaging method could be PET with 6-[18 F]fluorodopamine, which is also taken up by NAT, but-in contrast to mIBG-also by dopamine transporter (DAT), present in neuroblastoma cells (NAT > DAT). An enzymatic method was established allowing a rapid, quantitative transformation of FDOPA to FDA by DOPA decarboxylase within 25 minutes. This strategy was applied to [18 F]FDOPA, which was produced via nucleophilic synthesis (RCY 15%, 10 GBq, 50 GBq/µmol) and subsequently converted to [18 F]FDA (RCY 35%-50%, n = 5). Uptake and metabolism of FDOPA and FDA were analyzed in human Kelly and SK-N-SH neuroblastoma cell lines and in human Caki-1 kidney cells that can take up catecholamines and mIBG via an organic cation transporter (OCT). FDOPA and FDA were taken up by all three cells, but FDOPA could only be converted to FDA in neuroblastoma cells. As today, [18 F]FDOPA is well available in high yields, efficient enzymatic conversion to [18 F]FDA to be used for NAT/DAT PET imaging in neuroendocrine tumors is an attractive, alternative synthesis route.
Asunto(s)
Dihidroxifenilalanina/análogos & derivados , Dopamina/análogos & derivados , Enzimas/metabolismo , Neuroblastoma/patología , Transporte Biológico , Línea Celular Tumoral , Técnicas de Química Sintética , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Dopamina/síntesis química , Dopamina/química , Dopamina/metabolismo , Humanos , CinéticaRESUMEN
INTRODUCTION: Radiolabeled meta-iodobenzylguanidine (mIBG) is used for imaging and therapy of neuroblastoma as well as pheochromocytoma. However, non-tumorous tissues also incorporate mIBG mainly by organic cation transporters (OCTs). In this study, we tested different clinically approved corticosteroids as potential inhibitors of the OCT3-mediated uptake in vitro and in vivo, to achieve a more selective mIBG tumor uptake. METHODS: The in vitro incorporation of [(3)H]norepinephrine ([(3)H]NE), [(3)H]dopamine ([(3)H]DA) and [(123)I]mIBG in neuroblastoma cells (SK-N-SH, Kelly, IMR-32) and in HEK-293 cells transfected with human OCT3 was measured with and without supplemental corticosteroids (hydrocortisone, prednisolone, dexamethasone, corticosterone). The in vivo biodistribution of [(123)I]mIBG in absence and presence of corticosteroids was studied in non-tumor bearing NOD scid gamma mice. Retrospectively, we selected patients with and without corticosteroid treatment prior to [(123)I]mIBG scintigraphy. RESULTS: A concentration-dependent inhibitory effect of different corticosteroids on the [(3)H]NE and [(3)H]DA uptake via OCT3 was illustrated in vitro. The highest OCT3 inhibition was observed for corticosterone, but clinically used corticosteroids, showed also promising inhibitory effects. In contrast, the uptake in neuroblastoma cells was reduced only moderately. Hydrocortisone or prednisolone had only minor effects on [(123)I]mIBG uptake of both neuroblastoma cells, but reduced uptake in OCT3 expressing cells significantly. In mice tissues, [(123)I]mIBG uptake was inhibited by corticosteroids especially in the small intestine and kidney. Finally, in one patient with hydrocortisone treatment performed prior to [(123)I]mIBG scan, heart and liver uptake was reduced compared to untreated patients. CONCLUSIONS: The OCT3 is widely spread in many organs and responsible for non-targeted uptake of radiolabeled mIBG. In our study, clinically approved corticosteroids inhibited mIBG uptake in OCT3 expressing cells effectively, whereas tracer accumulation in NT (norepinephrine transporter) expressing neuroblastoma cells showed consistency. We conclude, that a single dose of hydrocortisone or prednisolone prior to [(123)I]mIBG scintigraphy may improve specificity and reduce radiation dose to non-target organs.
Asunto(s)
3-Yodobencilguanidina/metabolismo , Corticoesteroides/farmacología , Aprobación de Drogas , Neuroblastoma/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , 3-Yodobencilguanidina/farmacocinética , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hidrocortisona/farmacología , Masculino , Ratones , Prednisolona/farmacología , Distribución TisularRESUMEN
Neuroblastoma is one of the most common solid tumors in childhood and usually accompanied with poor prognosis and rapid tumor progression when diagnosed with amplification of the proto-oncogene N-Myc. The amplification of N-Myc has major influence on the maintenance of aerobic glycolysis, also known as the Warburg effect. This specific switch in the conversion of pyruvate to lactate instead of the conversion of pyruvate to acetyl-coenzyme A even in the presence of oxygen has important benefits for the tumor, e.g. increased production of enzymes and enzyme substrates that are involved in tumor progression, angiogenesis and inhibition of apoptosis. The antiprotozoal drug nifurtimox, which is generally used for the treatment of infections with the parasitic protozoan Trypanosoma cruzi, has been reported to have cytotoxic properties in the therapy of neuroblastoma. However, its action of mechanism has not been described in detail yet. The presented in vitro study on the neuroblastoma cell lines LA-N-1, IMR-32, LS and SK-N-SH shows an increased production of oxidative stress, a reduced lactate dehydrogenase enzyme activity and reduced lactate production after nifurtimox treatment. Furthermore, nifurtimox leads to reduced mRNA and protein levels of the proto-oncogene protein N-Myc. Thus, the current work gives new insights into the effect of nifurtimox on tumor metabolism revealing a shifted glucose metabolism from production of lactate to oxidative phosphorylation and a reduced expression of the major molecular prognostic factor in neuroblastoma N-Myc, presenting nifurtimox as a possible adjuvant therapeutic agent against (high risk) neuroblastoma.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Glucólisis/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Nifurtimox/farmacología , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Aerobiosis , Apoptosis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Expresión Génica , Humanos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Estrés Oxidativo , Proto-Oncogenes Mas , Especies Reactivas de Oxígeno/metabolismo , Topotecan/farmacologíaRESUMEN
Even in the presence of oxygen most cancer cells convert glucose to lactate via pyruvate instead of performing oxidative phosphorylation (aerobic glycolysis-Warburg effect). Thus, it has been considered to shift pyruvate - the metabolite of aerobic glycolysis - to acetylCoA by activation of pyruvate dehydrogenase (PDH). AcetylCoA will then be metabolized by oxidative phosphorylation. Therefore, the purpose of this study was to shift tumor cells from aerobic glycolysis to oxidative phosphorylation using dichloroacetate (DCA), an inhibitor of PDH-kinase. The effects of DCA were assayed in vitro in Neuro-2a (murine neuroblastoma), Kelly and SK-N-SH (human neuroblastoma) as well as SkBr3 (human breast carcinoma) cell lines. The effects of DCA on tumor development were investigated in vivo using NMRI nu/nu mice bearing subcutaneous Neuro-2a xenografts. For that purpose animals were treated continuously with DCA in the drinking water. Tumor volumes were monitored using caliper measurements and via [18F]-FDG-positron emission tomography. DCA treatment increased viability/proliferation in Neuro-2a and SkBr3 cells, but did not cause significant alterations of PDH activity. However, no significant effects of DCA could be observed in Kelly and SK-N-SH cells. Accordingly, in mice bearing Neuro-2a xenografts, DCA significantly increased tumor proliferation compared to mock-treated mice. Thus, we could demonstrate that DCA - an indicated inhibitor of tumor growth - efficiently promotes tumor growth in Neuro-2a cells in vitro and in vivo.
RESUMEN
(131)Iodine-labelled (meta-iodobenzyl)guanidine ([(131)I]-mIBG) and busulfan [butane-1,4-diylbis(methanesulfonate)] are well-established pharmaceuticals in neuroblastoma therapy. We report the design, synthesis, and testing of hybrid molecules-mBBG and pBBG-which combine key structural features of (meta-iodobenzyl)guanidine and busulfan: they contain a benzylguanidine moiety for accumulating in neuroblastoma cells via the noradrenaline transporter and, in the meta- or para-position, respectively, one of the two identical alkylating motives of busulfan for killing cells. Uptake and toxicity of hybrids mBBG and pBBG in human neuroblastoma cells compared favorably to their ancestors [(131)I]-mIBG and busulfan.
Asunto(s)
Busulfano/síntesis química , Guanidinas/síntesis química , Alquilación , Busulfano/química , Busulfano/farmacología , Supervivencia Celular/efectos de los fármacos , Guanidinas/química , Guanidinas/farmacología , Humanos , Estructura Molecular , Neuroblastoma/tratamiento farmacológico , Células Tumorales CultivadasRESUMEN
Cancer cells convert glucose preferentially to lactate even in the presence of oxygen (aerobic glycolysis-Warburg effect). New concepts in cancer treatment aim at inhibition of aerobic glycolysis. Pyruvate dehydrogenase converts pyruvate to acetylCoA thus preventing lactate formation. Therefore, the aim of this study was to evaluate compounds that could activate pyruvate dehydrogenase in cancer cells. We investigated the effects of (R)-(+)-α-lipoic acid (LPA) and dichloroacetate (DCA), possible activators of pyruvate dehydrogenase, on suppression of aerobic glycolysis and induction of cell death. The neuroblastoma cell lines Kelly, SK-N-SH, Neuro-2a and the breast cancer cell line SkBr3 were incubated with different concentrations (0.1-30 mM) of LPA and DCA. The effects of both compounds on cell viability/proliferation (WST-1 assay), [18F]-FDG uptake, lactate production and induction of apoptosis (flow cytometric detection of caspase-3) were evaluated. Furthermore, NMRI nu/nu mice that had been inoculated s.c. with SkBr3 cells were treated daily for four weeks with LPA (i.p, 18.5 mg/kg) starting at day 7 p.i.. Tumor development was measured with a sliding caliper and monitored via [18F]-FDG-PET. Residual tumors after therapy were examined histopathologically. These data suggests that LPA can reduce (1) cell viability/proliferation, (2) uptake of [18F]-FDG and (3) lactate production and increase apoptosis in all investigated cell lines. In contrast, DCA was almost ineffective. In the mouse xenograft model with s.c. SkBr3 cells, daily treatment with LPA retarded tumor progression. Therefore, LPA seems to be a promising compound for cancer treatment.
Asunto(s)
Ácido Dicloroacético/uso terapéutico , Neoplasias Mamarias Animales/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Ácido Tióctico/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácido Dicloroacético/farmacología , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Cetona Oxidorreductasas/efectos de los fármacos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Ácido Tióctico/farmacologíaRESUMEN
Many cancer cells metabolize glucose preferentially via pyruvate to lactate instead to CO(2) and H(2)O (oxidative phosphorylation) even in the presence of oxygen (Warburg effect). Dichloroacetate (DCA) is a drug which is able to shift pyruvate metabolism from lactate to acetyl-CoA (tricarboxylic acid cycle) by indirect activation of pyruvate dehydrogenase (PDH). This can subsequently lead to an increased flow of oxygen in the respiratory chain, associated with enhanced generation of reactive oxygen species (ROS) which may cause apoptosis. In order to investigate if DCA may be suitable for neuroblastoma therapy, it was investigated on three human neuroblastoma cell lines whether DCA can reduce lactate production and enhance oxygen consumption. The data show, that DCA (in the low millimolar range) is able to reduce lactate production, but there was only a slight shift to increased oxygen consumption and almost no effect on cell vitality, proliferation and apoptosis of the three cell lines investigated. Therefore, DCA at low millimolar concentrations seems to be only of minor efficacy for neuroblastoma treatment.
Asunto(s)
Ácido Dicloroacético/farmacología , Ácido Láctico/biosíntesis , Neuroblastoma/metabolismo , Oxígeno/metabolismo , Acetilcoenzima A/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Medios de Cultivo/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática , Humanos , Mitocondrias , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Fosforilación Oxidativa , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
By intravenous (but not oral) application of ascorbate, millimolar serum concentrations can be reached, which are preferentially cytotoxic to cancer cells. Cytotoxicity is mediated by transition metal-dependent generation of H(2)O(2) in the interstitial space. In this study, the sensitivity of neuroblastoma cells (Kelly, SK-N-SH) to ascorbate and H(2)O(2) and their defense mechanisms against H(2)O(2) were investigated. Since aerobic glycolysis (the Warburg effect) is a feature of many tumour cells, their glucose consumption and lactate production were monitored. Furthermore, synthesis and release of ferritin by neuroblastoma cells were analysed in order to examine whether ferritin is possibly an iron source for H(2)O(2) generation. Ascorbate (0.6-5.0 mM) and H(2)O(2) (25-100 muM) were found to be similarly cytotoxic to Kelly and SK-N-SH cells. In each case, cytotoxicity increased if cell concentrations decreased, in accordance with low cell concentrations having lower capacities to detoxify H(2)O(2). Kelly and SK-N-SH cells produced and released remarkable amounts of lactate and ferritin. We propose the selective cytotoxicity of high dose ascorbate to tumour cells to be due to the preferential generation of H(2)O(2) in the acidic and ferritin-rich tumour microenvironment, combined with reduced defense systems against H(2)O(2) as a consequence of aerobic glycolysis.
Asunto(s)
Ácido Ascórbico/farmacología , Citotoxinas/farmacología , Ferritinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Neuroblastoma/tratamiento farmacológico , Línea Celular Tumoral , HumanosRESUMEN
Embryonic stem cells are by definition the master cells capable of differentiating into every type of cells either in vitro or in vivo. Several lines of evidence suggest, however, that adult stem cells and even terminally differentiated somatic cells under appropriate microenvironmental cues are able to be reprogrammed and contribute to a much wider spectrum of differentiated progeny than previously anticipated. This has been demonstrated by using tissue- specific stem cells, which like embryonic stem cells do not express CD45 as an exclusive hematopoietic marker (skin, adipose, cord blood and bone marrow- derived stem cells). On the other side, there is a great number of reports which demonstrate that hematopoietic cells (CD45+) from different sources (peripheral blood, cord blood, bone marrow) are also able to cross the tissue boundaries and give rise to the cells of the other germ layers. Herein we discuss the differentiation and reprogramming potential of both hematopoietic and non- hematopoietic stem cells along endodermal, mesodermal and neuroectodermal lineage and their importance for regenerative medicine.
Asunto(s)
Células Madre Adultas/fisiología , Células Madre Multipotentes/fisiología , Células Madre Pluripotentes/fisiología , Medicina Regenerativa/métodos , Células Madre Adultas/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula , Sangre Fetal/citología , Folículo Piloso/citología , Humanos , Células Madre Multipotentes/citología , Células Madre Pluripotentes/citología , Piel/citología , Trasplante de Células MadreRESUMEN
For imaging of neuroblastoma and phaeochromocytoma, [(123)I]meta-iodobenzylguanidine ([(123)I]mIBG) is routinely used, whereas [(18)F]6-fluorodopamine ([(18)F]6-FDA) is sporadically applied for positron emission tomography in pheochromocytoma. Both substances are taken up by catecholamine transporters (CATs). In competition, some other cell types are able to take up catecholamines and related compounds probably by organic cation (OCT) [extraneuronal monoamine (EMT)] transporters (OCT1, OCT2, OCT3=EMT). In this study, we investigated the uptake of radioiodine-labeled meta-iodobenzylguanidine (mIBG) as well as [(3)H]dopamine (mimicring 6-fluorodopamine) and [(3)H]noradrenaline. SK-N-SH (neuroblastoma) and PC-12 (phaeochromocytoma) cells were used and compared with HEK-293 cells transfected with OCT1, OCT2 and OCT3, respectively. In order to gain a more selective uptake in CAT expressing tumor cells, different specific inhibitors were measured. Uptake of mIBG into OCT-expressing cells was similar or even better as into both CAT-expressing cell lines, whereas dopamine and noradrenaline uptake was much lower in OCT-expressing cells. In presence of corticosterone (f.c. 10(-4) M], catecholamine and mIBG uptake into SK-N-SH and PC-12 cells was only slightly reduced. In contrast, this process was significantly inhibited in OCT2 and OCT3 transfected HEK-293 as well as in Caki-1 cells, which naturally express OCT3. We conclude that the well-known corticosteroid corticosterone might be used in combination with [(18)F]6-FDA or [(123)I]mIBG to improve specific imaging of neuroblastoma and pheochromocytoma and to reduce irradiation dose to nontarget organs in [(131)I]mIBG treatment.
Asunto(s)
3-Yodobencilguanidina/metabolismo , Catecolaminas/metabolismo , Corticosterona/farmacología , Regulación Neoplásica de la Expresión Génica , Bombas Iónicas/metabolismo , Neuroblastoma/patología , Feocromocitoma/patología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Desipramina/farmacología , Dopamina/análogos & derivados , Dopamina/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Feocromocitoma/genética , Feocromocitoma/metabolismoRESUMEN
Multipotent mesenchymal stromal cells (MSCs) play an important role in stromal support for hematopoietic stem cells, immune modulation, and tissue regeneration. We investigated their potential as cellular therapeutic tools in neurometabolic diseases as a growing number of affected children undergo to bone marrow transplantation. MSCs were isolated from bone marrow aspirates and expanded ex vivo under various culture conditions. MSCs under optimal good medical practice (GMP)-conform culture conditions showed the typical morphology, immunophenotype, and plasticity. Biochemically, the activities of beta-hexosaminidase A, total beta-hexosaminidase, arylsulfatase A (ASA), and beta-galactosidase measured in MSCs were comparable to those in fibroblasts of healthy donors. These four enzymes were interesting for their expression in MSCs, as each of them is defective, respectively, in well-known neurometabolic diseases. We found that MSCs released significant amounts of ASA into the media. In coculture experiments, fibroblasts from patients with metachromatic leukodystrophy, who are deficient for ASA, took up a substantial amount of ASA that was released into the media from MSCs. Mannose-6-phosphate (M6P) inhibited this uptake, which was in accordance with the M6P receptor-mediated uptake of lysosomal enzymes. Taken together, we show that MSCs produce appreciable amounts of lysosomal enzyme activities, making these cells first-choice candidates for providing metabolic correction when given to enzyme-deficient patients. With the example of ASA, it was also shown that an enzyme secreted from MSCs is taken up by enzyme-deficient patient fibroblasts. Given the plasticity of MSCs, these cells represent an interesting add-on option for cellular therapy in children undergoing bone marrow transplantation for lysosomal storage diseases and other neurometabolic diseases.
Asunto(s)
Leucodistrofia Metacromática/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Células Madre Multipotentes , Trasplante de Médula Ósea , Cerebrósido Sulfatasa/análisis , Cerebrósido Sulfatasa/deficiencia , Niño , Preescolar , Técnicas de Cocultivo , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Humanos , Leucodistrofia Metacromática/enzimología , Leucodistrofia Metacromática/patología , Masculino , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/patología , Mucopolisacaridosis I/enzimología , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/terapia , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/patología , Trasplante Autólogo , Trasplante Homólogo , beta-Galactosidasa/análisis , beta-N-Acetilhexosaminidasas/análisisRESUMEN
BACKGROUND: RT-PCR analysis of compounds of catecholamine metabolism (in particular tyrosine hydroxylase, TH) is widely used for the detection of contaminating neuroblastoma cells in hematopoietic stem cell preparations. Due to reports in the literature showing that hematopoietic cells are also able to produce catecholamines, we investigated whether TH-RT-PCR is really suitable for this purpose. MATERIALS AND METHODS: Besides neuroblastoma cells, mononuclear blood cells, apheresis preparations and hematopoietic stem cells were used for single and nested RT-PCR. In addition to TH, the expressions of dopamine-beta-hydroxylase and noradrenaline transporter were analyzed. RESULTS: Using single RT-PCR, a clear discrimination between neuroblastoma and hematopoietic cells was possible. However, by using nested RT-PCR, the "neuroblastoma markers" were also detected in a significant percentage of non-mobilized mononuclear blood cells, in mononuclear blood cells of healthy donors mobilized with G-CSF, and in highly purified CD34+ and CD133+ stem cells from healthy mobilized donors. CONCLUSION: Our results raise the question of whether the RT-PCR analysis of compounds of catecholamine metabolism is suitable and selective enough to detect the contamination of hematopoietic stem cells by a low number of neuroblastoma cells.
Asunto(s)
Catecolaminas/biosíntesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/patología , Tirosina 3-Monooxigenasa/análisis , Línea Celular Tumoral , Dopamina beta-Hidroxilasa/análisis , Dopamina beta-Hidroxilasa/biosíntesis , Dopamina beta-Hidroxilasa/genética , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/enzimología , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/enzimología , Leucocitos Mononucleares/metabolismo , Neuroblastoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Tirosina 3-Monooxigenasa/biosíntesis , Tirosina 3-Monooxigenasa/genéticaRESUMEN
Glycolysis is for some cells, such as erythrocytes, neutrophil granulocytes and many cancer cells, the only or most important source of energy (ATP) production. Based on previous studies we developed an isotachophoretic (ITP) method which allows, in principle, the simultaneous determination of all metabolites of glycolysis. Since glucose metabolites are small anions, mobility of some of them may overlap in isotachophoresis and, therefore, partial mixed zones are generated. By variation of the leading/terminating system, however, it is possible to separate the compounds of interest. In this communication, we describe a method for analysis of glucose metabolites in erythrocytes from healthy donors during storage in blood bags, and from patients with thalassemia, with special respect to intracellular 2,3 bisphosphoglycerate, lactate and ATP/ADP. The well known characteristic changes of glycolysis in erythrocytes during blood storage and in erythrocytes from thalassemia patients, which are often analysed by separate enzymatic assays, could be confirmed with this isotachophoretic procedure. The method is currently adapted for analysis of glycolysis in neutrophil granulocytes and cancer cells which requires some modifications of sample preparation and performance of the isotachophoretic analysis.