Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 21084, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702945

RESUMEN

In contrast to the conventional approach of directly comparing genomic sequences using sequence alignment tools, we propose a computational approach that performs comparisons between sequence generators. These sequence generators are learned via a data-driven approach that empirically computes the state machine generating the genomic sequence of interest. As the state machine based generator of the sequence is independent of the sequence length, it provides us with an efficient method to compute the statistical distance between large sets of genomic sequences. Moreover, our technique provides a fast and efficient method to cluster large datasets of genomic sequences, characterize their temporal and spatial evolution in a continuous manner, get insights into the locality sensitive information about the sequences without any need for alignment. Furthermore, we show that the technique can be used to detect local regions with mutation activity, which can then be applied to aid alignment techniques for the fast discovery of mutations. To demonstrate the efficacy of our technique on real genomic data, we cluster different strains of SARS-CoV-2 viral sequences, characterize their evolution and identify regions of the viral sequence with mutations.


Asunto(s)
COVID-19/virología , Biología Computacional/métodos , Genómica , Mutación , SARS-CoV-2/genética , Algoritmos , Análisis por Conglomerados , Análisis Mutacional de ADN , Genoma Viral , Humanos , Aprendizaje Automático , Modelos Teóricos , Probabilidad , Procesos Estocásticos
2.
PLoS One ; 16(9): e0256831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495981

RESUMEN

Current approach for the detection of cancer is based on identifying genetic mutations typical to tumor cells. This approach is effective only when cancer has already emerged, however, it might be in a stage too advanced for effective treatment. Cancer is caused by the continuous accumulation of mutations; is it possible to measure the time-dependent information of mutation accumulation and predict the emergence of cancer? We hypothesize that the mutation history derived from the tandem repeat regions in blood-derived DNA carries information about the accumulation of the cancer driver mutations in other tissues. To validate our hypothesis, we computed the mutation histories from the tandem repeat regions in blood-derived exomic DNA of 3874 TCGA patients with different cancer types and found a statistically significant signal with specificity ranging from 66% to 93% differentiating Glioblastoma patients from other cancer patients. Our approach and findings offer a new direction for future cancer prediction and early cancer detection based on information derived from blood-derived DNA.


Asunto(s)
Células Sanguíneas/metabolismo , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/genética , ADN/genética , Detección Precoz del Cáncer/métodos , Glioblastoma/sangre , Glioblastoma/genética , Mutación , Neoplasias Encefálicas/patología , Bases de Datos Genéticas , Exoma , Glioblastoma/patología , Humanos , Aprendizaje Automático , Sensibilidad y Especificidad , Alineación de Secuencia/métodos , Secuencias Repetidas en Tándem/genética
3.
BMC Bioinformatics ; 20(1): 64, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30727948

RESUMEN

BACKGROUND: Tandem repeat sequences are common in the genomes of many organisms and are known to cause important phenomena such as gene silencing and rapid morphological changes. Due to the presence of multiple copies of the same pattern in tandem repeats and their high variability, they contain a wealth of information about the mutations that have led to their formation. The ability to extract this information can enhance our understanding of evolutionary mechanisms. RESULTS: We present a stochastic model for the formation of tandem repeats via tandem duplication and substitution mutations. Based on the analysis of this model, we develop a method for estimating the relative mutation rates of duplications and substitutions, as well as the total number of mutations, in the history of a tandem repeat sequence. We validate our estimation method via Monte Carlo simulation and show that it outperforms the state-of-the-art algorithm for discovering the duplication history. We also apply our method to tandem repeat sequences in the human genome, where it demonstrates the different behaviors of micro- and mini-satellites and can be used to compare mutation rates across chromosomes. It is observed that chromosomes that exhibit the highest mutation activity in tandem repeat regions are the same as those thought to have the highest overall mutation rates. However, unlike previous works that rely on comparing human and chimpanzee genomes to measure mutation rates, the proposed method allows us to find chromosomes with the highest mutation activity based on a single genome, in essence by comparing (approximate) copies of the pattern in tandem repeats. CONCLUSION: The prevalence of tandem repeats in most organisms and the efficiency of the proposed method enable studying various aspects of the formation of tandem repeats and the surrounding sequences in a wide range of settings. AVAILABILITY: The implementation of the estimation method is available at http://ips.lab.virginia.edu/smtr .


Asunto(s)
Duplicación de Gen , Secuencias Repetidas en Tándem/genética , Algoritmos , Cromosomas Humanos X/genética , Simulación por Computador , Genoma Humano , Humanos , Método de Montecarlo , Mutación/genética , Tasa de Mutación , Procesos Estocásticos
4.
Proc Natl Acad Sci U S A ; 115(5): 903-908, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339484

RESUMEN

A natural feature of molecular systems is their inherent stochastic behavior. A fundamental challenge related to the programming of molecular information processing systems is to develop a circuit architecture that controls the stochastic states of individual molecular events. Here we present a systematic implementation of probabilistic switching circuits, using DNA strand displacement reactions. Exploiting the intrinsic stochasticity of molecular interactions, we developed a simple, unbiased DNA switch: An input signal strand binds to the switch and releases an output signal strand with probability one-half. Using this unbiased switch as a molecular building block, we designed DNA circuits that convert an input signal to an output signal with any desired probability. Further, this probability can be switched between 2 n different values by simply varying the presence or absence of n distinct DNA molecules. We demonstrated several DNA circuits that have multiple layers and feedback, including a circuit that converts an input strand to an output strand with eight different probabilities, controlled by the combination of three DNA molecules. These circuits combine the advantages of digital and analog computation: They allow a small number of distinct input molecules to control a diverse signal range of output molecules, while keeping the inputs robust to noise and the outputs at precise values. Moreover, arbitrarily complex circuit behaviors can be implemented with just a single type of molecular building block.

5.
Nature ; 475(7356): 368-72, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21776082

RESUMEN

The impressive capabilities of the mammalian brain--ranging from perception, pattern recognition and memory formation to decision making and motor activity control--have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control. Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the 'intelligent' behaviour required for survival. However, the study of how molecules can 'think' has not produced an equal variety of computational models and applications of artificial chemical systems. Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron. Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours. Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks. Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern. Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment.


Asunto(s)
Computadores Moleculares , ADN/química , Redes Neurales de la Computación , Biomimética , ADN/análisis , Toma de Decisiones , Memoria , Modelos Biológicos , Nanotecnología , Neuronas , Biología Sintética
6.
Nano Lett ; 8(10): 3345-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18729415

RESUMEN

Graphene's remarkable mechanical and electrical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive material for novel computing devices. We report the development of a nonvolatile memory element based on graphene break junctions. Our devices have demonstrated thousands of writing cycles and long retention times. We propose a model for device operation based on the formation and breaking of carbon atomic chains that bridge the junctions. We demonstrate information storage based on the concept of rank coding, in which information is stored in the relative conductance of graphene switches in a memory cell.

8.
BMC Genet ; 6: 5, 2005 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-15698479

RESUMEN

BACKGROUND: Nematode sinusoidal movement has been used as a phenotype in many studies of C. elegans development, behavior and physiology. A thorough understanding of the ways in which genes control these aspects of biology depends, in part, on the accuracy of phenotypic analysis. While worms that move poorly are relatively easy to describe, description of hyperactive movement and movement modulation presents more of a challenge. An enhanced capability to analyze all the complexities of nematode movement will thus help our understanding of how genes control behavior. RESULTS: We have developed a user-friendly system to analyze nematode movement in an automated and quantitative manner. In this system nematodes are automatically recognized and a computer-controlled microscope stage ensures that the nematode is kept within the camera field of view while video images from the camera are stored on videotape. In a second step, the images from the videotapes are processed to recognize the worm and to extract its changing position and posture over time. From this information, a variety of movement parameters are calculated. These parameters include the velocity of the worm's centroid, the velocity of the worm along its track, the extent and frequency of body bending, the amplitude and wavelength of the sinusoidal movement, and the propagation of the contraction wave along the body. The length of the worm is also determined and used to normalize the amplitude and wavelength measurements. To demonstrate the utility of this system, we report here a comparison of movement parameters for a small set of mutants affecting the Go/Gq mediated signaling network that controls acetylcholine release at the neuromuscular junction. The system allows comparison of distinct genotypes that affect movement similarly (activation of Gq-alpha versus loss of Go-alpha function), as well as of different mutant alleles at a single locus (null and dominant negative alleles of the goa-1 gene, which encodes Go-alpha). We also demonstrate the use of this system for analyzing the effects of toxic agents. Concentration-response curves for the toxicants arsenite and aldicarb, both of which affect motility, were determined for wild-type and several mutant strains, identifying P-glycoprotein mutants as not significantly more sensitive to either compound, while cat-4 mutants are more sensitive to arsenite but not aldicarb. CONCLUSIONS: Automated analysis of nematode movement facilitates a broad spectrum of experiments. Detailed genetic analysis of multiple alleles and of distinct genes in a regulatory network is now possible. These studies will facilitate quantitative modeling of C. elegans movement, as well as a comparison of gene function. Concentration-response curves will allow rigorous analysis of toxic agents as well as of pharmacological agents. This type of system thus represents a powerful analytical tool that can be readily coupled with the molecular genetics of nematodes.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Movimiento , Acetilcolina/metabolismo , Animales , Automatización , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Métodos , Microscopía por Video , Mutación , Nematodos/genética , Nematodos/fisiología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...