Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Nutr ; 122(11): 1242-1254, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31782375

RESUMEN

Physicochemical properties of diets are believed to play a major role in the regulation of digesta transit in the gastrointestinal tract. Starch, being the dominant nutrient in pig diets, strongly influences these properties. We studied transport of digesta solids and liquids through the upper gastrointestinal tract of ninety pigs in a 3 × 3 factorial arrangement. Dietary treatments varied in starch source (barley, maize and high-amylose maize) and form (isolated starch, ground cereal and extruded cereal). Mean retention times (MRT) of digesta solids ranged 129-225 min for the stomach and 86-124 min for the small intestine (SI). The MRT of solids consistently exceeded that of liquids in the stomach, but not in the SI. Solid digesta of pigs fed extruded cereals remained 29-75 min shorter in the stomach compared with pigs fed ground cereals (P < 0·001). Shear stress of whole digesta positively correlated with solid digesta MRT in the stomach (r 0·33, P < 0·001), but not in the SI. The saturation ratio (SR), the actual amount of water in stomach digesta as a fraction of the theoretical maximum held by the digesta matrix, explained more variation in digesta MRT than shear stress. The predictability of SR was hampered by the accumulation of large particles in the stomach. In addition, the water-holding capacity of gelatinised starch leads to a decreased SR of diets, but not of stomach digesta, which was caused by gastric hydrolysis of starch. Both of these phenomena hinder the predictability of gastric retention times based on feed properties.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Digestión/fisiología , Tránsito Gastrointestinal/fisiología , Sus scrofa/fisiología , Animales , Fenómenos Químicos , Contenido Digestivo/química , Hordeum/química , Hordeum/metabolismo , Reología , Almidón/química , Almidón/metabolismo , Zea mays/química , Zea mays/metabolismo
2.
Int J Biol Macromol ; 140: 515-521, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31394148

RESUMEN

Consumption of non-starch polysaccharides (NSP) is associated with reduced risk of obesity. This study aimed to compare the effects of cereals (oats) and legumes (soybean), rich in different classes of NSP, on appetite regulation and fat accumulation in rats. Soy pectin fermented more efficient than cereal arabinoxylan in rats. Soy pectin and oat ß-glucan were utilized mainly in the caecum of rats. Only small amount of maltodextrin, cello-oligosaccharides and xylo-oligosaccharides were detected in the digesta. Caecal fermentation of soy pectin produced significantly higher concentration of short chain fatty acids (SCFAs) compared to the control. Retroperitoneal (RP) fat-pad weight was significantly lower for rats fed with soybean meal enriched diet than for controls. An inverse correlation between rat RP fat-pad weight and concentration (and proportion) of butyrate was observed. Consumption of soy pectin and oat ß-glucan enriched foods to produce targeted SCFAs in vivo could be a potential strategy to lower fat mass accumulation and a potential tool to manage obesity.


Asunto(s)
Avena/química , Glycine max/química , Obesidad/prevención & control , Polisacáridos/química , Animales , Regulación del Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ciego/efectos de los fármacos , Ciego/metabolismo , Fibras de la Dieta/farmacología , Digestión/efectos de los fármacos , Fermentación/efectos de los fármacos , Humanos , Obesidad/metabolismo , Pectinas/farmacología , Polisacáridos/farmacología , Ratas , beta-Glucanos/farmacología
3.
Br J Nutr ; 121(10): 1124-1136, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837011

RESUMEN

This study aimed to examine in vivo starch digestion kinetics and to unravel the mechanisms of starch hydrolysing enzymes. Ninety pigs (23 (sd 2·1) kg body weight) were assigned to one of nine treatments in a 3×3 factorial arrangement, with starch source (barley, maize, high-amylose (HA) maize) and form (isolated, within cereal matrix, extruded) as factors. We determined starch digestion coefficients (DC), starch breakdown products and digesta retention times in four small-intestinal segments (SI1-4). Starch digestion in SI2 of pigs fed barley and maize, exceeded starch digestion of pigs fed HA maize by 0·20-0·33 DC units (P<0·01). In SI3-4, barley starch were completely digested, whereas the cereal matrix of maize hampered digestion and generated 16 % resistant starch in the small intestine (P<0·001). Extrusion increased the DC of maize and HA maize starch throughout the small intestine but not that of barley (P<0·05). Up to 25 % of starch residuals in the proximal small intestine of pigs was present as glucose and soluble α(1-4) maltodextrins. The high abundance of glucose, maltose and maltotriose in the proximal small intestine indicates activity of brush-border enzymes in the intestinal lumen, which is exceeded by α-amylase activity. Furthermore, we found that in vivo starch digestion exceeded our in vitro predictions for rapidly digested starch, which indicates that the role of the stomach on starch digestion is currently underestimated. Consequently, in vivo glucose release of slowly digestible starch is less gradual than expected, which challenges the prediction quality of the in vitro assay.


Asunto(s)
Alimentación Animal/análisis , Dieta/métodos , Digestión/efectos de los fármacos , Grano Comestible , Almidón/farmacocinética , Animales , Hidrólisis , Cinética , Porcinos
4.
PLoS One ; 13(7): e0199499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975743

RESUMEN

The absorption of Maillard reaction products (MRP) from dietary origin has been linked to the occurrence of chronic diseases. The aim of the present study was to determine the effects of toasting time of rapeseed meal (RSM) and the processing method of the diets (pelleting and extrusion) that included RSM on the apparent ileal digestibility (AID) of total lysine, fructosyl-lysine (FL), carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL), lanthionine (LAN) and lysinoalanine (LAL) in growing pigs. The study consisted of a 2×3 factorial design with toasting time of RSM (60, 120 min) and diet processing method (mash, pelleted, extruded) as factors. Fifty growing pigs were individually fed one of the experimental diets for 4.5 consecutive days. Following euthanasia, samples of digesta were collected from the terminal 1.5 m of the small intestine. Increasing the toasting time of RSM increased the contents of FL, CML and CEL, whereas the additional effects of the diet processing methods were relatively small. Lysinoalanine and lanthionine were not detected in the diets; therefore, digestibility of these compounds could not be determined. The contents of FL, CML and CEL in the ileal chyme were positively correlated to their contents in the diets. The AID of the MRP from thermally-treated RSM were overall low and were not related to their contents in the diets. The AID of FL ranged between -8.5 and 19.1%, whilst AID of CML and CEL ranged from -0.2 to 18.3 and 3.6 to 30%, respectively. In conclusion, thermal treatments have clear effects on the contents of MRP in the diets. These compounds have relatively low digestibility in growing pigs.


Asunto(s)
Alimentación Animal , Digestión , Reacción de Maillard , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Brassica rapa , Contenido Digestivo , Porcinos
5.
J Anim Sci ; 96(6): 2265-2277, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29688508

RESUMEN

Effects of physicochemical characteristics of feed ingredients on DE and ME and apparent total tract digestibility (ATTD) of GE, DM, and nutrients were determined in growing pigs using ingredients with different ratios between insoluble dietary fiber (IDF) and soluble dietary fiber (SDF). Eighty growing barrows (BW: 48.41 ± 1.50 kg) were allotted to a randomized complete block design with 10 diets and eight replicate pigs per diet. Dietary treatments included a corn-based diet, a wheat-based diet, a corn-soybean meal (SBM) diet, and seven diets based on a mixture of the corn-SBM diet and canola meal, distillers dried grains with solubles (DDGS), corn germ meal (CGM), copra expellers, sugar beet pulp (SBP), synthetic cellulose, or pectin. Values for the ATTD of DM and nutrients were also compared with the in vitro digestibility of GE, DM, and nutrients. Results indicated that the ATTD of GE was greater (P < 0.05) in wheat than in canola meal, DDGS, CGM, copra expellers, SBP, and synthetic cellulose, but not different from corn, SBM, or pectin. SBM had greater (P < 0.05) DE and ME (DM basis) compared with all other ingredients. The concentration of ME (DM basis) was greater (P < 0.05) in wheat than in canola meal, DDGS, CGM, copra expellers, SBP, synthetic cellulose, and pectin, but not different from corn. Stronger correlations between total dietary fiber (TDF) and DE and ME than between ADF or NDF and DE and ME were observed, indicating that TDF can be used to more accurately predict DE and ME than values for NDF or ADF. The DE, ME, and the ATTD of DM in ingredients were positively correlated (P < 0.05) with in vitro ATTD of DM, indicating that the in vitro procedure may be used to estimate DE and ME in feed ingredients. Swelling and water-binding capacity were positively correlated (P < 0.05) with the ATTD of IDF, TDF, nonstarch polysaccharides (NSP), and insoluble NSP, and viscosity was positively correlated (P < 0.05) with the ATTD of NDF, IDF, and insoluble NSP, indicating that some physical characteristics may influence digestibility of fiber. However, physical characteristics of feed ingredients were not correlated with the concentration of DE and ME, which indicates that these parameters do not influence in vivo energy digestibility in feed ingredients. It is concluded that the DE and ME in feed ingredients may be predicted from some chemical constituents and from in vitro digestibility of DM, but not from physical characteristics.


Asunto(s)
Alimentación Animal/análisis , Fibras de la Dieta/farmacología , Metabolismo Energético/efectos de los fármacos , Porcinos/fisiología , Animales , Fenómenos Químicos , Dieta/veterinaria , Digestión/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Masculino , Distribución Aleatoria , Glycine max/química , Porcinos/crecimiento & desarrollo , Triticum/química , Zea mays/química
6.
Front Immunol ; 9: 383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545800

RESUMEN

Dietary carbohydrate fibers are known to prevent immunological diseases common in Western countries such as allergy and asthma but the underlying mechanisms are largely unknown. Until now beneficial effects of dietary fibers are mainly attributed to fermentation products of the fibers such as anti-inflammatory short-chain fatty acids (SCFAs). Here, we found and present a new mechanism by which dietary fibers can be anti-inflammatory: a commonly consumed fiber, pectin, blocks innate immune receptors. We show that pectin binds and inhibits, toll-like receptor 2 (TLR2) and specifically inhibits the proinflammatory TLR2-TLR1 pathway while the tolerogenic TLR2-TLR6 pathway remains unaltered. This effect is most pronounced with pectins having a low degree of methyl esterification (DM). Low-DM pectin interacts with TLR2 through electrostatic forces between non-esterified galacturonic acids on the pectin and positive charges on the TLR2 ectodomain, as confirmed by testing pectin binding on mutated TLR2. The anti-inflammatory effect of low-DM pectins was first studied in human dendritic cells and mouse macrophages in vitro and was subsequently tested in vivo in TLR2-dependent ileitis in a mouse model. In these mice, ileitis was prevented by pectin administration. Protective effects were shown to be TLR2-TLR1 dependent and independent of the SCFAs produced by the gut microbiota. These data suggest that low-DM pectins as a source of dietary fiber can reduce inflammation through direct interaction with TLR2-TLR1 receptors.


Asunto(s)
Fibras de la Dieta/uso terapéutico , Ileítis/terapia , Pectinas/uso terapéutico , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Dieta Occidental , Modelos Animales de Enfermedad , Doxorrubicina , Esterificación , Ácidos Grasos Volátiles , Femenino , Células HEK293 , Ácidos Hexurónicos/química , Humanos , Ileítis/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Pectinas/química , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 1/genética , Receptor Toll-Like 2/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-30619606

RESUMEN

BACKGROUND: Starch is the main source of energy in commonly used pig diets. Besides effects related to the extent of starch digestion, also several effects related to variation in digestion rate have recently been demonstrated in non-ruminants. Different rates of starch digestion in animals and in in vitro models have been reported, depending on the botanic origin of starch. Starches from different botanic sources differ widely in structural and molecular properties. Predicting the effect of starch properties on in vitro digestion kinetics based on existing literature is hampered by incomplete characterization of the starches, or by a selective choice of starches from a limited number of botanic sources. This research aimed to analyse the relationships between starch properties and in vitro digestion kinetics of pure starches isolated from a broad range of botanic origins, which are used in non-ruminant diets or have a potential to be used in the future. Therefore we studied starch digestion kinetics of potato, pea, corn, rice, barley, and wheat starches, and analysed the granule diameter, number of pores, type and amount of crystalline structure, amylose content and amylopectin side-chain length of all starches. RESULTS: Multivariate analysis revealed strong correlations among starch properties, leading us to conclude that effects of most starch characteristics are strongly interrelated. Across all analysed botanic sources, crystalline type and amylopectin chain length showed the strongest correlation with in vitro digestion kinetics. Increased percentages of A-type crystalline structure and amylopectin side chains of DP 6-24 both increased the rate of digestion. In addition, within, but not across, (clusters of) botanic sources, a decrease in amylose content and increase in number of pores correlated positively with digestion kinetics. CONCLUSION: The type of crystalline structure and amylopectin chain length distribution of starch correlate significantly with digestion kinetics of starches across botanic sources in an in vitro pig model. Variation in digestion kinetics across botanic sources is not additively explained by other starch properties measured, but appears to be confined within botanical sources.

8.
J Am Oil Chem Soc ; 94(4): 619-630, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28392576

RESUMEN

Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was performed with pancreatic proteases to represent in vitro protein digestibility. Increasing the toasting time of RSM linearly decreased the rate of protein hydrolysis of RSM and the insoluble protein fractions. The extent of hydrolysis was, on average, 44% higher for the insoluble compared with the soluble protein fraction. In contrast, the rate of protein hydrolysis of the soluble protein fraction was 3-9-fold higher than that of the insoluble protein fraction. The rate of hydrolysis of the insoluble protein fraction linearly decreased by more than 60% when comparing the untoasted to the 120 min toasted RSM. Increasing the toasting time elicited the formation of Maillard reaction products (furosine, Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine) and disulfide bonds in the insoluble protein fraction, which is proposed to explain the reduction in the hydrolysis rate of this fraction. Overall, longer toasting times increased the size of the peptides resulting after hydrolysis of the RSM and the insoluble protein fraction. The hydrolysis kinetics of the soluble and insoluble protein fractions and the proportion of soluble:insoluble proteins in the RSM explain the reduction in the rate of protein hydrolysis observed in the RSM with increasing toasting time.

9.
Mol Nutr Food Res ; 61(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27198846

RESUMEN

SCOPE: We aimed to investigate the effects of three different soluble pectins on the digestion of other consumed carbohydrates, and the consequent alterations of microbiota composition and SCFA levels in the intestine of pigs. METHODS AND RESULTS: Piglets were fed a low-methyl esterified pectin enriched diet (LMP), a high-methyl esterified pectin enriched diet (HMP), a hydrothermal treated soybean meal enriched diet (aSBM) or a control diet (CONT). LMP significantly decreased the ileal digestibility of starch resulting in more starch fermentation in the proximal colon. In the ileum, low-methyl esterified pectin present was more efficiently fermented by the microbiota than high-methyl esterified pectin present which was mainly fermented by the microbiota in the proximal colon. Treated soybean meal was mainly fermented in the proximal colon and shifted the fermentation of cereal dietary fiber to more distal parts, resulting in high SCFA levels in the mid colon. LMP, HMP, and aSBM decreased the relative abundance of the genus Lactobacillus and increased that of Prevotella in the colon. CONCLUSION: The LMP, HMP, and aSBM, differently affected the digestion processes compared to the control diet and shaped the colonic microbiota from a Lactobacillus-dominating flora to a Prevotella-dominating community, with potential health-promoting effects.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Pectinas/farmacología , Alimentación Animal/análisis , Animales , Metabolismo de los Hidratos de Carbono , Carbohidratos de la Dieta/farmacocinética , Fibras de la Dieta/metabolismo , Fibras de la Dieta/farmacología , Digestión , Heces/química , Fermentación , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Intestino Grueso/efectos de los fármacos , Intestino Grueso/metabolismo , Glycine max , Almidón/metabolismo , Almidón/farmacocinética , Porcinos , Destete
10.
Artículo en Inglés | MEDLINE | ID: mdl-27777764

RESUMEN

BACKGROUND: Toasting during the production of rapeseed meal (RSM) decreases ileal crude protein (CP) and amino acid (AA) digestibility. The mechanisms that determine the decrease in digestibility have not been fully elucidated. A high protein quality, low-denatured, RSM was produced and toasted up to 120 min, with samples taken every 20 min. The aim of this study was to characterize secondary structure and chemical changes of proteins and glucosinolates occurring during toasting of RSM and the effects on its in vitro CP digestibility. RESULTS: The decrease in protein solubility and the increase of intermolecular ß-sheets with increasing toasting time were indications of protein aggregation. The contents of NDF and ADIN increased with increasing toasting time. Contents of arginine, lysine and O-methylisourea reactive lysine (OMIU-RL) linearly decreased with increasing toasting time, with a larger decrease of OMIU-RL than lysine. First-order reactions calculated from the measured parameters show that glucosinolates were degraded faster than lysine, OMIU-RL and arginine and that physical changes to proteins seem to occur before chemical changes during toasting. Despite the drastic physical and chemical changes noticed on the proteins, the coefficient of in vitro CP digestibility ranged from 0.776 to 0.750 and there were no effects on the extent of protein hydrolysis after 120 min. In contrast, the rate of protein hydrolysis linearly decreased with increasing toasting time, which was largely correlated to the decrease in protein solubility, lysine and OMIU-RL observed. Rate of protein hydrolysis was more than 2-fold higher for the untoasted RSM compared to the 120 min toasted material. CONCLUSIONS: Increasing the toasting time for the production of RSM causes physical and chemical changes to the proteins that decrease the rate of protein hydrolysis. The observed decrease in the rate of protein hydrolysis could impact protein digestion and utilization.

11.
J Nutr ; 141(9): 1657-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21795428

RESUMEN

We used the pig as a model to assess the effects of dietary fat content and composition on nutrient oxidation and energy partitioning in positive energy balance. Pigs weighing 25 kg were assigned to either: 1) a low fat-high starch diet, or 2) a high saturated-fat diet, or 3) a high unsaturated-fat diet. In the high-fat treatments, 20% starch was iso-energetically replaced by 10.8% lard or 10.2% soybean oil, respectively. For 7 d, pigs were fed twice daily at a rate of 1200 kJ digestible energy · kg(-0.75) · d(-1). Oral bolus doses of [U-(13)C] glucose, [U-(13)C] α-linoleate, [U-(13)C] stearate, and [U-(13)C] oleate were administered on d 1, 2, 4, and 6, respectively, and (13)CO(2) production was measured. Protein and fat deposition were measured for 7 d. Fractional oxidation of fatty acids from the low-fat diet was lower than from the high-fat diets. Within diets, the saturated [U-(13)C] stearate was oxidized less than the unsaturated [U-(13)C] oleate and [U-(13)C] linoleate. For the high unsaturated-fat diet, oxidation of [U-(13)C] oleate was higher than that of [U-(13)C] linoleate. In general, recovery of (13)CO(2) from labeled fatty acids rose within 2 h after ingestion but peaked around the next meal. This peak was induced by an increased energy expenditure that was likely related to increased eating activity. In conclusion, oxidation of dietary fatty acids in growing pigs depends on the inclusion level and composition of dietary fat. Moreover, our data suggest that the most recently ingested fatty acids are preferred substrates for oxidation when the direct supply of dietary nutrients has decreased and ATP requirements increase.


Asunto(s)
Dieta/veterinaria , Ácidos Linoleicos/metabolismo , Ácidos Oléicos/metabolismo , Ácidos Esteáricos/metabolismo , Porcinos/crecimiento & desarrollo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Digestión , Masculino , Oxidación-Reducción , Periodo Posprandial , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...