Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 147: 103811, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35781032

RESUMEN

Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 µM), pupae (1.4 µM), adult females (4.4 µM) and adult males (22 µM). Apo-Tsf1 at 1 µM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.


Asunto(s)
Drosophila melanogaster , Transferrina , Animales , Drosophila melanogaster/metabolismo , Femenino , Hierro/metabolismo , Masculino , Estrés Oxidativo , Paraquat/toxicidad , Fenotipo , Transferrina/química
2.
Insect Biochem Mol Biol ; 81: 1-9, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27986638

RESUMEN

Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 µM to 10 µM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 µM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 µM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.


Asunto(s)
Manduca/inmunología , Transferrina/fisiología , Animales , Líquido Extracelular/metabolismo , Hierro/metabolismo , Pruebas de Sensibilidad Microbiana , Transferrina/química , Transferrina/aislamiento & purificación
3.
Insect Biochem Mol Biol ; 59: 58-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25701385

RESUMEN

Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.


Asunto(s)
Anopheles/enzimología , Ascorbato Oxidasa/metabolismo , Proteínas de Insectos/metabolismo , Manduca/enzimología , Tribolium/enzimología , Secuencia de Aminoácidos , Animales , Ácido Ascórbico/química , Ceruloplasmina/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Compuestos Ferrosos/química , Hemolinfa/enzimología , Proteínas de Insectos/genética , Cinética , Datos de Secuencia Molecular , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Especificidad de la Especie , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...