Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Arch Biochem Biophys ; 754: 109950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430969

RESUMEN

The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.


Asunto(s)
Mycobacterium marinum , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Estructura Secundaria de Proteína , Macrólidos/química , Macrólidos/metabolismo , Hemo/química , Cristalografía por Rayos X
2.
Food Chem (Oxf) ; 8: 100193, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38292011

RESUMEN

Polyphenolic compounds are a class of phytonutrients that play important roles in plants and contribute to human health when incorporated into our diet through fruit consumption. A large proportion occur as glycoconjugates but the enzymes responsible for their glycosylation are poorly characterized. Here, we report the biochemical and structural characterization of two glycosyltransferases from sweet cherry named PaUGT1 and PaUGT2. Both are promiscuous glucosyltransferases active on diverse anthocyanidins and flavonols, as well as phenolic acids in the case of PaUGT1. They also exhibit weaker galactosyltransferase activity. The expression of the gene encoding PaUGT1, the most active of the two proteins, follows anthocyanin accumulation during fruit ripening, suggesting that this enzyme is the primary glycosyltransferase involved in flavonoid glycosylation in sweet cherry. It can potentially be used to synthesize diverse glycoconjugates of flavonoids for integration into bioactive formulations, and for generating new fruit cultivars with enhanced health-promoting properties using breeding methods.

3.
Chemistry ; 30(8): e202303335, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37971151

RESUMEN

The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Oxigenasas de Función Mixta , Parabenos , Sistema Enzimático del Citocromo P-450/metabolismo , Catálisis
4.
Bioorg Med Chem ; 96: 117509, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948922

RESUMEN

d-Alanine-d-alanine ligase (Ddl) catalyses the ATP-dependent formation of d-Ala-d-Ala, a critical component in bacterial cell wall biosynthesis and is a validated target for new antimicrobial agents. Here, we describe the structure-guided design, synthesis, and evaluation of ATP-competitive N-acyl-substituted sulfamides 27-36, 42, 46, 47 as inhibitors of Staphylococcus aureus Ddl (SaDdl). A crystal structure of SaDdl complexed with ATP and d-Ala-d-Ala (PDB: 7U9K) identified ATP-mimetic 8 as an initial scaffold for further inhibitor design. Evaluation of 8 in SaDdl enzyme inhibition assays revealed the ability to reduce enzyme activity to 72 ± 8 % (IC50 = 1.6 mM). The sulfamide linker of 8 was extended with 2-(4-methoxyphenyl)ethanol to give 29, to investigate further interactions with the d-Ala pocket of SaDdl, as predicted by molecular docking. This compound reduced enzyme activity to 89 ± 1 %, with replacement of the 4-methoxyphenyl group in 29 with alternative phenyl substituents (27, 28, 31-33, 35, 36) failing to significantly improve on this (80-89 % remaining enzyme activity). Exchanging these phenyl substituents with selected heterocycles (42, 46, 47) did improve activity, with the most active compound (42) reducing SaDdl activity to 70 ± 1 % (IC50 = 1.7 mM), which compares favourably to the FDA-approved inhibitor d-cycloserine (DCS) (IC50 = 0.1 mM). To the best of our knowledge, this is the first reported study of bisubstrate SaDdl inhibitors.


Asunto(s)
Alanina , Péptido Sintasas , Simulación del Acoplamiento Molecular , Péptido Sintasas/química , Adenosina Trifosfato/química
5.
J Fungi (Basel) ; 9(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37998903

RESUMEN

Invasive fungal infections (IFIs) are prevalent in immunocompromised patients. Due to alarming levels of increasing resistance in clinical settings, new drugs targeting the major fungal pathogen Aspergillus fumigatus are required. Attractive drug targets are those involved in essential processes like DNA replication, such as proliferating cell nuclear antigens (PCNAs). PCNA has been previously studied in cancer research and presents a viable target for antifungals. Human PCNA interacts with the p21 protein, outcompeting binding proteins to halt DNA replication. The affinity of p21 for hPCNA has been shown to outcompete other associating proteins, presenting an attractive scaffold for peptidomimetic design. p21 has no A. fumigatus homolog to our knowledge, yet our group has previously demonstrated that human p21 can interact with A. fumigatus PCNA (afumPCNA). This suggests that a p21-based inhibitor could be designed to outcompete the native binding partners of afumPCNA to inhibit fungal growth. Here, we present an investigation of extensive structure-activity relationships between designed p21-based peptides and afumPCNA and the first crystal structure of a p21 peptide bound to afumPCNA, demonstrating that the A. fumigatus replication model uses a PIP-box sequence as the method for binding to afumPCNA. These results inform the new optimized secondary structure design of a potential peptidomimetic inhibitor of afumPCNA.

6.
J Inorg Biochem ; 249: 112391, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37837941

RESUMEN

The cytochrome P450 enzymes (CYPs) are heme-thiolate monooxygenases that catalyse the insertion of an oxygen atom into the C-H bonds of organic molecules. In most CYPs, the activation of dioxygen by the heme is aided by an acid-alcohol pair of residues located in the I-helix of the enzyme. Mutation of the threonine residue of this acid-alcohol pair of CYP199A4, from the bacterium Rhodospeudomonas palustris HaA2, to a glutamate residue induces peroxygenase activity. In the X-ray crystal structures of this variant an interaction of the glutamate side chain and the distal aqua ligand of the heme was observed and this results in this ligand not being readily displaced in the peroxygenase mutant on the addition of substrate. Here we use a range of bulky hydrophobic and nitrogen donor containing ligands in an attempt to displace the distal aqua ligand of the T252E mutant of CYP199A4. Ligand binding was assessed by UV-visible absorbance spectroscopy, native mass spectrometry, electron paramagnetic resonance and X-ray crystallography. None of the ligands tested, even the nitrogen donor ligands which bind directly to the iron in the wild-type enzyme, resulted in displacement of the aqua ligand. Therefore, modification of the I-helix threonine residue to a glutamate residue results in a significant strengthening of the ferric distal aqua ligand. This ligand was not displaced using any of the ligands during this study and this provides a rationale as to why this mutant can shutdown the monooxygenase pathway of this enzyme and switch to peroxygenase activity.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hemo , Hemo/química , Ligandos , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro/química , Nitrógeno , Treonina , Glutamatos
7.
ACS Omega ; 8(32): 29143-29149, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599921

RESUMEN

warpDOCK is an open-source pipeline for virtual small-molecule drug discovery using cloud infrastructure. warpDOCK is designed from the ground up for the Oracle Cloud Infrastructure (OCI), enabling harmonious parallelism of docking calculations over thousands to hundreds of thousands of cores. This enables cost-effective sampling of ultra-large chemical libraries, potentially reducing the time to identify lead drug candidates by orders of magnitude. By utilizing established docking software and automating each step of the process, warpDOCK makes large-scale virtual screening accessible to a broad user group. The warpDOCK code can be found at the BruningLab GitHub repository (https://github.com/BruningLab/warpDOCK).

8.
ACS Chem Biol ; 18(9): 1985-1992, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37651626

RESUMEN

We previously reported potent ligands and inhibitors of Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS), a promising target for antituberculosis drug development (Schumann et al., ACS Chem Biol. 2021, 16, 2339-2347); here, the unconventional origin of the fragment compound they were derived from is described for the first time. Compound 1 (9b-hydroxy-6b,7,8,9,9a,9b-hexahydrocyclopenta[3,4]cyclobuta[1,2-c]chromen-6(6aH)-one), identified by an in silico fragment screen, was subsequently shown by surface plasmon resonance to have dose-responsive binding (KD = 0.6 mM). Clear electron density was revealed in the DAPA substrate binding pocket when 1 was soaked into MtDTBS crystals, but the density was inconsistent with the structure of 1. Here, we show that the lactone of 1 hydrolyzes to a carboxylic acid (2) under basic conditions, including those of the crystallography soak, with a subsequent ring opening of the component cyclobutane ring forming a cyclopentylacetic acid (3). Crystals soaked directly with authentic 3 produced an electron density that matched that of crystals soaked with presumed 1, confirming the identity of the bound ligand. The synthetic utility of fortuitously formed 3 enabled the subsequent compound development of nanomolar inhibitors. Our findings represent an example of chemical modification within drug discovery assays and demonstrate the value of high-resolution structural data in the fragment hit validation process.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Mycobacterium tuberculosis , Antituberculosos/farmacología , Bioensayo
9.
FEBS J ; 290(23): 5536-5553, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37581574

RESUMEN

Pseudomonas aeruginosa is a major human pathogen in the healthcare setting. The emergence of multi-drug-resistant and extensive drug-resistant P. aeruginosa is of great concern, and clearly indicates that new alternatives to current first-line antibiotics are required in the future. Inhibition of d-alanine-d-alanine production presents as a promising avenue as it is a key component in the essential process of cell wall biosynthesis. In P. aeruginosa, d-alanine-d-alanine production is facilitated by two isoforms, d-alanine-d-alanine ligase A (PaDdlA) and d-alanine-d-alanine ligase B (PaDdlA), but neither enzyme has been individually characterised to date. Here, we present the functional and structural characterisation of PaDdlA and PaDdlB, and assess their potential as antibiotic targets. This was achieved using a combination of in vitro enzyme-activity assays and X-ray crystallography. The former revealed that both isoforms effectively catalyse d-alanine-d-alanine production with near identical efficiency, and that this is effectively disrupted by the model d-alanine-d-alanine ligase inhibitor, d-cycloserine. Next, each isoform was co-crystallised with ATP and either d-alanine-d-alanine or d-cycloserine, allowing direct comparison of the key structural features. Both isoforms possess the same structural architecture and share a high level of conservation within the active site. Although residues forming the d-alanine pocket are completely conserved, the ATP-binding pocket possesses several amino acid substitutions resulting in a differing chemical environment around the ATP adenine base. Together, these findings support that the discovery of dual PaDdlA/PaDdlB competitive inhibitors is a viable approach for developing new antibiotics against P. aeruginosa.


Asunto(s)
Antibacterianos , Cicloserina , Humanos , Antibacterianos/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alanina , Estudios Prospectivos , Péptido Sintasas/química , Isoformas de Proteínas , Adenosina Trifosfato/química
10.
J Med Chem ; 66(15): 10354-10363, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37489955

RESUMEN

Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.


Asunto(s)
Peptidomiméticos , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Peptidomiméticos/farmacología , Replicación del ADN , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fluoresceínas
11.
Chemistry ; 29(50): e202301371, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37338048

RESUMEN

The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,ß-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.


Asunto(s)
Ácido Benzoico , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Óxidos , Tiofenos
12.
Food Chem ; 424: 136388, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37220682

RESUMEN

Anthocyanidin and flavonol glycosides have been linked to the health-promoting effects associated with apple consumption. However, very few enzymes involved in flavonoid glycosylation have been characterised to date. Here, we present the identification and phylogenetic analysis of 234 putative glycosyltransferases involved in flavonoid biosynthesis, and detail the biochemical and structural characterisation of MdUGT78T2 as a strict galactosyltransferase involved in the formation of quercetin-3-O-galactoside and cyanidin-3-O-galactoside, the major glycoconjugates of flavonoids in apple. The enzyme is also active on other flavonoids but with a lower catalytic efficiency. Our data, complemented with gene expression analysis suggest that MdUGT78T2 synthesises the glycoconjugates at both the early and late stages of fruit development. This newly discovered type of catalytic activity can potentially be exploited for in vitro modification of flavonoids to increase their stability in food products and to modify apple fruits and other commercial crops through breeding approaches to enhance their health benefits.


Asunto(s)
Malus , Malus/química , Frutas/química , Antocianinas/análisis , Filogenia , Fitomejoramiento , Flavonoides/análisis , Flavonoles/análisis , Galactosiltransferasas/análisis , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo
13.
Protein Sci ; 32(6): e4654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37165541

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) is a key metabolic enzyme in colonization and virulence of Neisseria meningitidis, a causative agent of meningococcal diseases. Here, the biochemical and structural properties of MTHFR from a virulent strain of N. meningitidis serogroup B (NmMTHFR) were characterized. Unlike other orthologs, NmMTHFR functions as a unique homohexamer, composed of three homo-dimerization partners, as shown in our 2.7 Å resolution crystal structure. Six active sites were formed solely within monomers and located away from the oligomerization interfaces. Flavin adenine dinucleotide cofactor formed hydrogen bonds with conserved sidechains, positioning its isoalloxazine ring adjacent to the overlapping binding sites of nicotinamide adenine dinucleotide (NADH) coenzyme and CH2 -H4 folate substrate. NmMTHFR utilized NADH (Km = 44 µM) as an electron donor in the NAD(P)H-CH2 -H4 folate oxidoreductase assay, but not nicotinamide adenine dinucleotide phosphate (NADPH) which is the donor required in human MTHFR. In silico analysis and mutagenesis studies highlighted the significant difference in orientation of helix α7A (Phe215-Thr225) with that in the human enzyme. The extended sidechain of Met221 on helix α7A plays a role in stabilizing the folded structure of NADH in the hydrophobic box. This supports the NADH specificity by restricting the phosphate group of NADPH that causes steric clashes with Glu26. The movement of Met221 sidechain allows the CH2 -H4 folate substrate to bind. The unique topology of its NADH and CH2 -H4 folate binding pockets makes NmMTHFR a promising drug target for the development of new antimicrobial agents that may possess reduced off-target side effects.


Asunto(s)
Metilenotetrahidrofolato Reductasa (NADPH2) , Neisseria meningitidis , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/química , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , NAD/química , NADP , Modelos Moleculares , Ácido Fólico/química , Ácido Fólico/metabolismo , Neisseria meningitidis/metabolismo , Adenina
14.
ACS Chem Biol ; 18(5): 1115-1123, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37146157

RESUMEN

Inverse agonists of peroxisome proliferator activated receptor γ (PPARγ) have emerged as safer alternatives to full agonists for their reduced side effects while still maintaining impressive insulin-sensitizing properties. To shed light on their molecular mechanism, we characterized the interaction of the PPARγ ligand binding domain with SR10221. X-ray crystallography revealed a novel binding mode of SR10221 in the presence of a transcriptionally repressing corepressor peptide, resulting in much greater destabilization of the activation helix, H12, than without corepressor peptide. Electron paramagnetic resonance provided in-solution complementary protein dynamic data, which revealed that for SR10221-bound PPARγ, H12 adopts a plethora of conformations in the presence of corepressor peptide. Together, this provides the first direct evidence for corepressor-driven ligand conformation for PPARγ and will allow the development of safer and more effective insulin sensitizers suitable for clinical use.


Asunto(s)
Insulinas , PPAR gamma , Proteínas Co-Represoras/metabolismo , Agonismo Inverso de Drogas , Ligandos , PPAR gamma/metabolismo , Conformación Proteica
15.
J Steroid Biochem Mol Biol ; 231: 106317, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37141947

RESUMEN

The CYP124 and CYP142 families of bacterial cytochrome P450 monooxygenases (CYPs), catalyze the oxidation of methyl branched lipids, including cholesterol, as one of the initial activating steps in their catabolism. Both enzymes are reported to supplement the CYP125 family of P450 enzymes. These CYP125 enzymes are found in the same bacteria, and are the primary cholesterol/cholest-4-en-3-one metabolizing enzymes. To further understand the role of the CYP124 and CYP142 cytochrome P450s we investigated the Mycobacterium marinum enzymes, MmarCYP124A1 and CYP142A3, with various cholesterol analogs with modifications on the A and B rings of the steroid. We assessed the substrate binding and catalytic activity of each enzyme. Neither enzyme could bind or oxidize cholesteryl acetate or 3,5-cholestadiene, which have modifications at the C3 hydroxyl moiety of cholesterol. The CYP142 enzyme was better able to accommodate and oxidize cholesterol analogs which have changes on the A/B rings including cholesterol-5α,6α-epoxide and diastereomers of 5-cholestan-3-ol. The CYP124 enzyme was more tolerant of changes at C7 of the cholesterol B ring, e.g., 7-ketocholesterol than in the A ring. The selectivity for oxidation at the ω-carbon of a branched chain was observed in all steroids that were oxidized. The 7-ketocholesterol-bound MmarCYP124A1 enzyme from M. marinum, was structurally characterized by X-ray crystallography to 1.81 Å resolution. The 7-ketocholesterol-bound X-ray crystal structure of the MmarCYP124A1 enzyme revealed that the substrate binding mode of this cholesterol derivative was altered compared to those observed with other non-steroidal ligands. The structure provided an explanation for the selectivity of the enzyme for terminal methyl hydroxylation.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Oxidación-Reducción , Sistema Enzimático del Citocromo P-450/metabolismo , Colesterol/metabolismo , Esteroides
16.
J Inorg Biochem ; 244: 112234, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116269

RESUMEN

Cytochrome P450 (CYP) enzymes are heme-thiolate monooxygenases which catalyze the oxidation of aliphatic and aromatic C-H bonds and other reactions. The oxidation of halogens by cytochrome P450 enzymes has also been reported. Here we use CYP199A4, from the bacterium Rhodopseudomonas palustris strain HaA2, with a range of para-substituted benzoic acid ligands, which contain halogens, to assess if this enzyme can oxidize these species or if the presence of these electronegative atoms can alter the outcome of P450-catalyzed reactions. Despite binding to the enzyme, there was no detectable oxidation of any of the 4-halobenzoic acids. CYP199A4 was, however, able to efficiently catalyze the oxidation of both 4-chloromethyl- and 4-bromomethyl-benzoic acid to 4-formylbenzoic acid via hydroxylation of the α­carbon. The 4-chloromethyl substrate bound in the enzyme active site in a similar manner to 4-ethylbenzoic acid. This places the benzylic α­carbon hydrogens in an unfavorable position for abstraction indicating a degree of substrate mobility must be possible within the active site. CYP199A4 catalyzed oxidations of 4-(2'-haloethyl)benzoic acids yielding α-hydroxylation and desaturation metabolites. The α-hydroxylation product was the major metabolite. The desaturation pathway is significantly disfavored compared to 4-ethylbenzoic acid. This may be due to the electron-withdrawing halogen atom or a different positioning of the substrate within the active site. The latter was demonstrated by the X-ray crystal structures of CYP199A4 with these substrates. Overall, the presence of a halogen atom positioned close to the heme iron can alter the binding orientation and outcomes of enzyme-catalyzed oxidation.


Asunto(s)
Ácido Benzoico , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Catálisis , Hemo/química , Hidroxilación
17.
J Am Chem Soc ; 145(16): 9207-9222, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042073

RESUMEN

The cytochrome P450 (CYP) superfamily of heme monooxygenases has demonstrated ability to facilitate hydroxylation, desaturation, sulfoxidation, epoxidation, heteroatom dealkylation, and carbon-carbon bond formation and cleavage (lyase) reactions. Seeking to study the carbon-carbon cleavage reaction of α-hydroxy ketones in mechanistic detail using a microbial P450, we synthesized α-hydroxy ketone probes based on the physiological substrate for a well-characterized benzoic acid metabolizing P450, CYP199A4. After observing low activity with wild-type CYP199A4, subsequent assays with an F182L mutant demonstrated enzyme-dependent C-C bond cleavage toward one of the α-hydroxy ketones. This C-C cleavage reaction was subject to an inverse kinetic solvent isotope effect analogous to that observed in the lyase activity of the human P450 CYP17A1, suggesting the involvement of a species earlier than Compound I in the catalytic cycle. Co-crystallization of F182L-CYP199A4 with this α-hydroxy ketone showed that the substrate bound in the active site with a preference for the (S)-enantiomer in a position which could mimic the topology of the lyase reaction in CYP17A1. Molecular dynamics simulations with an oxy-ferrous model of CYP199A4 revealed a displacement of the substrate to allow for oxygen binding and the formation of the lyase transition state proposed for CYP17A1. This demonstration that a correctly positioned α-hydroxy ketone substrate can realize lyase activity with an unusual inverse solvent isotope effect in an engineered microbial system opens the door for further detailed biophysical and structural characterization of CYP catalytic intermediates.


Asunto(s)
Liasas , Humanos , Dominio Catalítico , Catálisis , Simulación de Dinámica Molecular
18.
Biophys Rep (N Y) ; 3(1): 100100, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36949749

RESUMEN

Human aquaporin 1 (hAQP1) forms homotetrameric channels that facilitate fluxes of water and small solutes across cell membranes. In addition to water channel activity, hAQP1 displays non-selective monovalent cation-channel activity gated by intracellular cyclic GMP. Dual water and ion-channel activity of hAQP1, thought to regulate cell shape and volume, could offer a target for novel therapeutics relevant to controlling cancer cell invasiveness. This study probed properties of hAQP1 ion channels using proteoliposomes, which, unlike conventional cell-based systems such as Xenopus laevis oocytes, are relatively free of background ion channels. Histidine-tagged recombinant hAQP1 protein was synthesized and purified from the methylotrophic yeast, Pichia pastoris, and reconstituted into proteoliposomes for biophysical analyses. Osmotic water channel activity confirmed correct folding and channel assembly. Ion-channel activity of hAQP1-Myc-His6 was recorded by patch-clamp electrophysiology with excised patches. In symmetrical potassium, the hAQP1-Myc-His6 channels displayed coordinated gating, a single-channel conductance of approximately 75 pS, and multiple subconductance states. Applicability of this method for structure-function analyses was tested using hAQP1-Myc-His6 D48A/D185A channels modified by site-directed mutations of charged Asp residues estimated to be adjacent to the central ion-conducting pore of the tetramer. No differences in conductance were detected between mutant and wild-type constructs, suggesting the open-state conformation could differ substantially from expectations based on crystal structures. Nonetheless, the method pioneered here for AQP1 demonstrates feasibility for future work defining structure-function relationships, screening pharmacological inhibitors, and testing other classes in the broad family of aquaporins for previously undiscovered ion-conducting capabilities.

19.
ACS Med Chem Lett ; 14(3): 285-290, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36923924

RESUMEN

The rise of multidrug-resistant bacteria, such as Staphylococcus aureus, has highlighted global urgency for new classes of antibiotics. Biotin protein ligase (BPL), a critical metabolic regulatory enzyme, is an important target that shows significant promise in this context. Here we report the in silico docking, synthesis, and biological assay of a new series of N1-diphenylmethyl-1,2,3-triazole-based S. aureus BPL (SaBPL) inhibitors (8-19) designed to probe the adenine binding site and define whole-cell activity for this important class of inhibitor. Triazoles 13 and 14 with N1-propylamine and -butanamide substituents, respectively, were particularly potent with K i values of 10 ± 2 and 30 ± 6 nM, respectively, against SaBPL. A strong correlation was apparent between the K i values for 8-19 and the in silico docking, with hydrogen bonding to amino acid residues S128 and N212 of SaBPL likely contributing to potent inhibition.

20.
Biochemistry ; 62(4): 899-911, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36745518

RESUMEN

Polyamines and polyamine-containing metabolites are involved in many cellular processes related to bacterial cell growth and survival. In Escherichia coli, the bifunctional enzyme glutathionylspermidine synthetase/amidase (GspSA) controls the production of glutathionylspermidine, which has a protective role against oxidative stress. E. coli also encodes two enzymes with homology to the synthetase domain of GspSA, YgiC, and YjfC; however, these do not catalyze the formation of glutathionylspermidine, and their catalytic function remained unknown. Here, we detail the structural and functional characterization of YgiC and YjfC. Using X-ray crystallography, the high-resolution crystal structures of YgiC and YjfC were obtained. This revealed that YgiC and YjfC possess multiple substitutions in key residues required for binding of glutathione in GspSA. Despite this difference, these enzymes share a similar active site structure to GspSA, suggesting that they catalyze the formation of an alternate peptide─spermidine conjugate. As the physiological substrates of YgiC and YjfC are unknown, this was probed using the peptide triglycine as a model substrate. A combination of enzyme activity assays and mass spectrometry revealed that YgiC and YjfC can function as peptide-spermidine ligases, forming a triglycine-spermidine conjugate. For both enzymes, conjugate formation was only observed in the presence of spermidine, but not other common polyamines, supporting that spermidine or a spermidine derivative is the physiological substrate. Importantly, since YgiC and YjfC are widely distributed in Gram-negative bacterial species, this suggests that these enzymes function in a conserved cellular process, representing a currently unknown aspect of bacterial polyamine metabolism.


Asunto(s)
Escherichia coli , Espermidina , Dominio Catalítico , Escherichia coli/metabolismo , Ligasas/metabolismo , Poliaminas/metabolismo , Proteínas de Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...