Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 413: 131491, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39288836

RESUMEN

The performance of a methane-producing microbial electrolysis cell (MEC) markedly relies on the activity and resilience of its electroactive anodic biofilm. Here, the capability of an MEC anodic biofilm to recover following extended starvation periods (90 days) and to function under different applied anode potentials (i.e., +0.20 and -0.10 V, vs. Standard Hydrogen Electrode-SHE) was investigated. Cyclic voltammetry proved to be an insightful means to characterize the biofilm electrocatalytic activity and to track the dynamics of biofilm reactivation. Under all tested conditions the anodic biofilm rapidly and completely recovered from starvation in less than 144 h. However, starvation reduced the electron transfer redundancy of the biofilm causing the disappearance of redox sites operating at the more positive potentials (around 0.0 V vs. SHE) and retaining those having a formal potential lower than -0.18 V vs. SHE. This study presents compelling evidence for the resilience and efficiency of methane-producing MEC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Electrodos , Electrólisis , Metano , Metano/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Catálisis , Oxidación-Reducción
2.
Environ Res ; 263(Pt 1): 119997, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278580

RESUMEN

Graphene-based materials are gaining increasing attention towards their use in manufacturing and environmental applications. In this context, multi-layer graphene (MG) has been recently applied for the adsorption of contaminants from water resulting in promising results. However, the extreme lightness of this material often makes it difficult to handle due to its potential dispersion in the surrounding environment as well as to its transport and loss with the effluent. In this study, a novel granular material was synthesized by embedding MG into an alginate matrix, resulting in the so-called granular MG (GMG). This material was tested for the adsorption of methylene blue (MB) from water, which is a typical dye used in textile industries and must be removed from the effluent. GMG materials with different MG contents (5 and 20 %) were compared with MG and a commercial adsorbent to assess their adsorption capacity and the most performing material was selected for in-depth physical and chemical characterization. The structural, surface, kinetic, isotherm, and thermodynamic properties, the pH and temperature dependence, as well as the regeneration and reuse of GMG 5% were investigated through batch adsorption tests under different operating conditions. The study reveals that GMG 5% has a superior adsorption capacity compared to the tested materials and can be considered as a promising alternative to commercial carbon-based materials according to techno-economic considerations.

3.
ChemistryOpen ; : e202400134, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086036

RESUMEN

In this work we have derived the parameters of an AMOEBA-like polarizable forcefield for electrolytes based on tetramethoxy and tetraethoxy-glyoxal acetals, and propylene carbonate. The resulting forcefield has been validated using both ab-initio data and the experimental properties of the fluids. Using molecular dynamics simulations, we have investigated the structural features and the solvation properties of both the neat liquids and of the corresponding 1 M LiTFSI electrolytes at the molecular level. We present a detailed analysis of the Li ion solvation shells, of their structure and highlight the different behavior of the solvents in terms of their molecular structure and coordinating features.

4.
Small ; 20(42): e2401610, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38856970

RESUMEN

Herein, the design of novel and safe electrolyte formulations for high-voltage Ni-rich cathodes is reported. The solvent mixture comprising 1,1,2,2-tetraethoxyethane and propylene carbonate not only displays good transport properties, but also greatly enhances the overall safety of the cell thanks to its low flammability. The influence of the conducting salts, that is, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI), and of the additives lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato)borate (LiDFOB) is examined. Molecular dynamics simulations are carried out to gain insights into the local structure of the different electrolytes and the lithium-ion coordination. Furthermore, special emphasis is placed on the film-forming abilities of the salts to suppress the anodic dissolution of the aluminum  current collector and to create a stable cathode electrolyte interphase (CEI). In this regard, the borate-based additives significantly alleviate the intrinsic challenges associated with the use of LiTFSI and LiFSI salts. It is worth remarking that a superior cathode performance is achieved by using the LiFSI/LiDFOB electrolyte, displaying a high specific capacity of 164 mAh g-1 at 6 C and ca. 95% capacity retention after 100 cycles at 1 C. This is attributed to the rich chemistry of the generated CEI layer, as confirmed by ex situ X-ray photoelectron spectroscopy.

5.
ChemSusChem ; : e202301962, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896830

RESUMEN

This study explores the properties of aprotic electrolytes via the application of experimental methods, including nuclear magnetic resonance spectroscopy and electrochemical techniques, along with molecular dynamic modeling. The aim is to provide a quantitative description of the physico-chemical properties of two well-established electrolytes (case studies), each exhibiting significantly distinct dielectric properties: a LiTFSI (Lithium bis(trifluoromethanesulfonyl)imide) solution in dimethyl sulfoxide (DMSO, dielectric constant ϵ ${\varepsilon{} }$ =46.68) and a LiTFSI solution in tetraethylene glycol dimethyl ether (TEGDME, ϵ ${\varepsilon{} }$ =7.71). We obtained a comprehensive insight into the properties of the electrolytes at both the macroscopic-collective and molecular levels with particular emphasis on the interactions between the Li ions and solvent molecules. We discovered remarkable disparities in the structural arrangements, solvation behaviors, and bulk-related properties of these electrolyte systems, particularly in response to temperature changes.

6.
ChemSusChem ; : e202400514, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753581

RESUMEN

The behaviour and compatibility of monoclinic sodium manganite, α-NaMnO2, cathodes at the interface with electrolytes based on the 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI) and N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide (N1114FSI) ionic liquids is presented and discussed. The Na+ insertion process was analysed through cyclic voltammetry tests combined with impedance spectroscopy measurements and the cell performance was tested by charge-discharge cycles. XPS and FIB-SEM measurements allowed analysis of the surface composition and the morphology of post-mortem cathodes. Overall, the α-NaMnO2 cathode showed high reversibility in N1114FSI-based electrolyte, delivering 60 % of the initial capacity after 1200 cycles in conjunction with a Coulombic efficiency above 99 %. To our knowledge, these very promising results are the best result obtained till now for monolithic α-NaMnO2 cathodes, are ascribable to the formation of a stable passive layer onto the electrode surface, as confirmed by spectroscopic analysis.

7.
ChemSusChem ; 17(20): e202400554, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728595

RESUMEN

Electrochemical energy storage systems based on sulfur and lithium can theoretically deliver high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolution of sulfur to high-molecular weight lithium polysulfides (LiPs with general formula Li2Sn, n≥4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs by diffusion or under the effect of the electric field to the lithium anode, activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and cycling stability. These drawbacks poses challenges to the commercialization of Li/S cells in the short term. In this study, we report on the decoration of reduced graphene oxide with MoO3 particles to enhance interactions with LiPs and retain sulfur at the cathode side. The combination of experiments and density functional theory calculations demonstrated improvements in binding interactions between the cathode and sulfur species, enhancing the cycling stability of the Li/S cells.

8.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38334540

RESUMEN

In the present work, an insight on the morpho/structural properties of semitransparent organic devices for buildings' integrated photovoltaics is presented, and issues related to interface and bulk stability are addressed. The organic photovoltaic (OPV) cells under investigation are characterized by a blend of PM6:Y6 as a photo-active layer, a ZnO ETL (electron transporting layer), a HTL (hole transporting layer) of HTL-X and a transparent electrode composed by Ag nanowires (AgNWs). The devices' active nanomaterials, processed as thin films, and their mutual nanoscale interfaces are investigated by a combination of in situ Energy Dispersive X-ray Reflectometry (EDXR) and ex situ Atomic Force Microscopy (AFM), X-ray Diffraction (XRD) and micro-Raman spectroscopy. In order to discriminate among diverse concomitant aging pathways potentially occurring upon working conditions, the effects of different stress factors were investigated: light and temperature. Evidence is gained of an essential structural stability, although an increased roughness at the ZnO/PM6:Y6 interface is deduced by EDXR measurements. On the contrary, an overall stability of the system subjected to thermal stress in the dark was observed, which is a clear indication of the photo-induced origin of the observed degradation phenomenon. Micro-Raman spectroscopy brings light on the origin of such effect, evidencing a photo-oxidation process of the active material in the device, using hygroscopic organic HTL, during continuous illumination in ambient moisture conditions. The process may be also triggered by a photocatalytic role of the ZnO layer. Therefore, an alternative configuration is proposed, where the hygroscopic HTL-X is replaced by the inorganic compound MoOx. The results show that such alternative configuration is stable under light stress (solar simulator), suggesting that the use of Molybdenum Oxide, limiting the photo-oxidation of the bulk PM6:Y6 active material, can prevent the cell from degradation.

9.
Small Methods ; 8(9): e2301466, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38164821

RESUMEN

Lithium-rich layered oxides (LRLOs) are one of the most attractive families among future positive electrode materials for the so-called fourth generation of lithium-ion batteries (LIBs). Their electrochemical performance is enabled by the unique ambiguous crystal structure that is still not well understood despite decades of research. In the literature, a clear structural model able to describe their crystallographic features is missing thereby hindering a clear rationalization of the interplay between synthesis, structure, and functional properties. Here, the structure of a specific LRLO, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2, using synchrotron X-ray diffraction (XRD), neutron diffraction (ND), and High-Resolution Transmission Electron Microscopy (HR-TEM), is analyzed. A systematic approach is applied to model diffraction patterns of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2 by using the Rietveld refinement method considering the R 3 ¯ $\bar{3}$ m and C2/m unit cells as the prototype structures. Here, the relative ability of a variety of structural models is compared to match the experimental diffraction pattern evaluating the impact of defects and supercells derived from the R 3 ¯ $\bar{3}$ m structure. To summarize, two possible models able to reconcile the description of experimental data are proposed here for the structure of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2: namely a monoclinic C2/m defective lattice (prototype Li2MnO3) and a monoclinic defective supercell derived from the rhombohedral R 3 ¯ $\bar{3}$ m unit cell (prototype LiCoO2).

10.
ACS Appl Mater Interfaces ; 15(51): 59348-59357, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38090803

RESUMEN

Lithium-oxygen aprotic batteries (aLOBs) are highly promising next-generation secondary batteries due to their high theoretical energy density. However, the practical implementation of these batteries is hindered by parasitic reactions that negatively impact their reversibility and cycle life. One of the challenges lies in the oxidation of Li2O2, which requires large overpotentials if not catalyzed. To address this issue, redox mediators (RMs) have been proposed to reduce the oxygen evolution reaction (OER) overpotentials. In this study, we focus on a lithium iodide RM and investigate its role on the degradation chemistry and the release of singlet oxygen in aLOBs, in different solvent environments. Specifically, we compare the impact of a polar solvent, dimethyl sulfoxide (DMSO), and a low polarity solvent, tetraglyme (G4). We demonstrate a strong interplay between solvation, degradation, and redox mediation in OER by LiI in aLOBs. The results show that LiI in DMSO-based electrolytes leads to extensive degradation and to 1O2 release, affecting the cell performance, while in G4-based electrolytes, the release of 1O2 appears to be suppressed, resulting in better cyclability.

11.
J Phys Chem A ; 127(44): 9229-9235, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37885210

RESUMEN

We present a computational study on the redox reactions of small clusters of Li superoxide and peroxide in the presence of halogen/halide redox mediators. The study is based on DFT calculations with a double hybrid functional and an implicit solvent model. It shows that iodine is less effective than bromine in the oxidation of Li2O2 to oxygen. On the basis of our thermodynamic data, in solvents with a low dielectric constant, iodine does not spontaneously promote either the oxidation of Li2O2 or the release of singlet oxygen, while bromine could spontaneously trigger both events. When a solvent with a large dielectric constant is used, both halogens appear to be able, at least on the basis of thermodynamics, to react spontaneously with the oxides, and the ensuing reaction sequence turned out to be strongly exoergic, thereby providing a route for the release of significant amounts of singlet oxygen. The role of spin-orbit coupling in providing a mechanism for singlet-triplet intersystem crossing has also been assessed.

12.
ChemSusChem ; 16(23): e202300840, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37493181

RESUMEN

Hard carbons (HC) from natural biowaste have been investigated as anodes for sodium-ion batteries in electrolytes based on 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]) and N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide ([N1114][FSI]) ionic liquids. The Na+ intercalation process has been analyzed by cyclic voltammetry tests, performed at different scan rates for hundreds of cycles, in combination with impedance spectroscopy measurements to decouple bulk and interfacial resistances of the cells. The Na+ diffusion coefficient in the HC host has been also evaluated via the Randles-Sevcik equation. Battery performance of HC anodes in the ionic liquid electrolytes has been evaluated in galvanostatic charge/discharge cycles at room temperature. The evolution of the SEI (solid electrochemical interface) layer grown on the HC surface has been carried out by Raman spectroscopy. Overall the sodiation process of the HC host is highly reversible and reproducible. In particular, a capacity retention exceeding 98 % of the initial value has been recorded in[N1114][FSI] electrolytes after more than 1500 cycles with a coulombic efficiency above 99 %, largely beyond standard carbonate-based electrolytes. Raman, transport properties and impedance confirms that ILs disclose the formation of SEI layers with superior ability to support the reversible Na+ intercalation with the possible minor contributions from the EMI+cation.

13.
Molecules ; 28(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37513297

RESUMEN

This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend's total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) and gold nanoparticles (GNPs). At the same time, the biological recognition element, Laccase from Trametes versicolor, TvLac, was immobilized on the sensor surface by using glutaraldehyde (GA) as a cross-linking agent. The platform was electrochemically characterized to ascertain the influence of the SPE surface modification on its performance. The working electrode (WE) surface morphology characterization was obtained by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) imaging. All the measurements were carried out with a micro-potentiostat, the Sensit Smart by PalmSens, connected to a smartphone. The developed biosensor provided a sensitivity of 0.12 µA/µM, a linear response ranging from 5 to 70 µM, and a lower detection limit (LOD) of 2.99 µM. Afterward, the biosensor was tested for quantifying the total Phs content in coffee blends, evaluating the influence of both the variety and the roasting degree. The smartphone-based electrochemical biosensor's performance was validated through the Folin-Ciocâlteu standard method.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos de Carbono , Nanotubos de Carbono/química , Café , Oro/química , Trametes , Espectroscopía Infrarroja por Transformada de Fourier , Teléfono Inteligente , Nanopartículas del Metal/química , Electrodos , Polifenoles , Técnicas Biosensibles/métodos , Técnicas Electroquímicas
14.
Entropy (Basel) ; 25(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238548

RESUMEN

Ionic liquids are good candidates as the main component of safe electrolytes for high-energy lithium-ion batteries. The identification of a reliable algorithm to estimate the electrochemical stability of ionic liquids can greatly speed up the discovery of suitable anions able to sustain high potentials. In this work, we critically assess the linear dependence of the anodic limit from the HOMO level of 27 anions, whose performances have been experimentally investigated in the previous literature. A limited r Pearson's value of ≈0.7 is found even with the most computationally demanding DFT functionals. A different model considering vertical transitions in a vacuum between the charged state and the neutral molecule is also exploited. In this case, the best-performing functional (M08-HX) provides a Mean Squared Error (MSE) of 1.61 V2 on the 27 anions here considered. The ions which give the largest deviations are those with a large value of the solvation energy, and therefore, an empirical model that linearly combines the anodic limit calculated by vertical transitions in a vacuum and in a medium with a weight dependent on the solvation energy is proposed for the first time. This empirical method can decrease the MSE to 1.29 V2 but still provides an r Pearson's value of ≈0.72.

15.
ACS Energy Lett ; 8(3): 1300-1312, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36937789

RESUMEN

Metal-sulfur batteries constitute an extraordinary research playground that ranges from fundamental science to applied technologies. However, besides the widely explored Li-S system, a remarkable lack of understanding hinders advancements and performance in all other metal-sulfur systems. In fact, similarities and differences make all generalizations highly inconsistent, thus unavoidably suggesting the need for extensive research explorations for each formulation. Here we review critically the most remarkable open challenges that still hinder the full development of metal-S battery formulations, starting from the lithium benchmark and addressing Na, K, Mg, and Ca metal systems. Our aim is to draw an updated picture of the recent efforts in the field and to shed light on the most promising innovation paths that can pave the way to breakthroughs in the fundamental comprehension of these systems or in battery performance.

16.
ACS Appl Polym Mater ; 5(2): 1453-1463, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36817333

RESUMEN

This work concerns the study of electrospun scaffolds as separators for aprotic lithium-ion batteries (LIBs) composed of the amorphous poly-d,l-lactide (PDLLA), in solution concentrations of 8, 10, and 12 wt % and in different ratios with cellulose nanocrystals (CNCs). PDLLA has been studied for the first time as a separator, taking into account its amorphous character that could facilitate electrolyte incorporation into the polymer matrix and influence ionic conductivity, together with CNCs, for reducing the hydrophobicity of the scaffolds. The embedding of the nanocrystals in the scaffolds was confirmed by X-ray diffraction analysis and attenuated total reflectance Fourier transform infrared spectroscopy. The polymer combination influenced the nanofibrous morphology as evaluated by scanning electron microscopy and modulated the electrochemical behavior of the membranes that was investigated through linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Among the studied categories, the P12 series displayed a nonhomogeneous electrolyte resistance and electrochemical stability, differently from P10, whose results suggested their application in LIBs with standard formulation, as confirmed by a preliminary performance test of the P10N6 formulation in a full Li-ion cell configuration.

17.
ACS Appl Energy Mater ; 5(2): 1905-1913, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35252774

RESUMEN

Lithium-rich layered oxides (LRLOs) are opening unexplored frontiers for high-capacity/high-voltage positive electrodes in Li-ion batteries (LIBs) to meet the challenges of green and safe transportation as well as cheap and sustainable stationary energy storage from renewable sources. LRLOs exploit the extra lithiation provided by the Li1.2TM0.8O2 stoichiometries (TM = a blend of transition metals with a moderate cobalt content) achievable by a layered structure to disclose specific capacities beyond 200-250 mA h g-1 and working potentials in the 3.4-3.8 V range versus Li. Here, we demonstrate an innovative paradigm to extend the LRLO concept. We have balanced the substitution of cobalt in the transition-metal layer of the lattice with aluminum and lithium, pushing the composition of LRLO to unexplored stoichiometries, that is, Li1.2+x (Mn,Ni,Co,Al)0.8-x O2-δ. The fine tuning of the composition of the metal blend results in an optimized layered material, that is, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2-δ, with outstanding electrochemical performance in full LIBs, improved environmental benignity, and reduced manufacturing costs compared to the state-of-the-art.

18.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34947533

RESUMEN

Pyrolyzed carbons from bio-waste sources are renewable nanomaterials for sustainable negative electrodes in Li- and Na-ion batteries. Here, carbon derived from a hazelnut shell has been obtained by hydrothermal processing of the bio-waste followed by thermal treatments and laser irradiation in liquid. A non-focused nanosecond pulsed laser source has been used to irradiate pyrolyzed carbon particles suspended in acetonitrile to modify the surface and morphology. Morphological, structural, and compositional changes have been investigated by microscopy, spectroscopy, and diffraction to compare the materials properties after thermal treatments as well as before and after the irradiation. Laser irradiation in acetonitrile induces remarkable alteration in the nanomorphology, increase in the surface area and nitrogen enrichment of the carbon surfaces. These materials alterations are beneficial for the electrochemical performance in lithium half cells as proved by galvanostatic cycling at room temperature.

19.
J Phys Chem A ; 125(42): 9368-9376, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34649438

RESUMEN

We use a multiconfigurational and correlated ab initio method to investigate the fundamental electronic properties of the peroxide MO2- (M = Li and Na) trimer to provide new insights into the rather complex chemistry of aprotic metal-O2 batteries. These electrochemical systems are largely based on the electronic properties of superoxide and peroxide of alkali metals. The two compounds differ by stoichiometry: the superoxide is characterized by a M+O2- formula, while the peroxide is characterized by [M+]2O22-. We show here that both the peroxide and superoxide states necessarily coexist in the MO2- trimer and that they correspond to their different electronic states. The energetic prevalence of either one or the other and the range of their coexistence over a subset of the MO2- nuclear configurations is calculated and described via a high-level multiconfigurational approach.

20.
Phys Chem Chem Phys ; 23(42): 24487-24496, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34698734

RESUMEN

Multivalent aprotic metal-oxygen batteries are a novel concept in the applied electrochemistry field. These systems are variants of the so-called Li-air batteries and up to present are in their research infancy. The superoxide disproportionation reaction is a crucial step for the operation of any metal-oxygen redox system using aprotic solvents: in the best scenario, disproportionation leads to peroxide formation while in the worse one it releases singlet molecular oxygen. In this work we address the fundamental thermodynamics of such reaction for alkali (Li, Na and K) and alkaline earth (Be, Mg and Ca) metal-O2 systems using multiconfigurational ab initio methods. Our aim is to draw a comprehensive description of the disproportionation reaction from superoxides to peroxides and to provide the thermodynamic likelihood of the pathways to singlet oxygen release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...