RESUMEN
Cryptococcus neoformans is a fungal pathogen that causes life-threatening meningoencephalitis in lymphopenic patients. Pulmonary macrophages comprise the first line of host defense upon inhalation of fungal spores by aiding in clearance but can also potentially serve as a niche for their dissemination. Given that macrophages play a key role in the outcome of a cryptococcal infection, it is crucial to understand factors that mediate phagocytosis of C. neoformans. Since lipid rafts (high-order plasma membrane domains enriched in cholesterol and sphingomyelin [SM]) have been implicated in facilitating phagocytosis, we evaluated whether these ordered domains govern macrophages' ability to phagocytose C. neoformans. We found that cholesterol or SM depletion resulted in significantly deficient immunoglobulin G (IgG)-mediated phagocytosis of fungus. Moreover, repletion of macrophage cells with a raft-promoting sterol (7-dehydrocholesterol) rescued this phagocytic deficiency, whereas a raft-inhibiting sterol (coprostanol) significantly decreased IgG-mediated phagocytosis of C. neoformans. Using a photoswitchable SM (AzoSM), we observed that the raft-promoting conformation (trans-AzoSM) resulted in efficient phagocytosis, whereas the raft-inhibiting conformation (cis-AzoSM) significantly but reversibly blunted phagocytosis. We observed that the effect on phagocytosis may be facilitated by Fcγ receptor (FcγR) function, whereby IgG immune complexes crosslink to FcγRIII, resulting in tyrosine phosphorylation of FcR γ-subunit (FcRγ), an important accessory protein in the FcγR signaling cascade. Correspondingly, cholesterol or SM depletion resulted in decreased FcRγ phosphorylation. Repletion with 7-dehydrocholesterol restored phosphorylation, whereas repletion with coprostanol showed FcRγ phosphorylation comparable to unstimulated cells. Together, these data suggest that lipid rafts are critical for facilitating FcγRIII-mediated phagocytosis of C. neoformans.
Asunto(s)
Anticuerpos Antifúngicos/metabolismo , Colesterol/metabolismo , Cryptococcus neoformans/metabolismo , Inmunoglobulina G/metabolismo , Macrófagos Alveolares/metabolismo , Fagocitosis , Receptores de IgG/metabolismo , Esfingomielinas/metabolismo , Animales , Línea Celular , Microdominios de Membrana/metabolismo , RatonesRESUMEN
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Infección Latente/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/inmunología , Pulmón/microbiologíaRESUMEN
FTY720 is a treatment for relapsing remitting multiple sclerosis (MS). It is an analog of sphingosine-1-phosphate (S1P) and targets S1P receptors 1, 3, 4, and 5. Recent reports indicate an association between long-term exposure to FTY720 and cases of cryptococcal infection. Here, we studied the effect of FTY720 and its derivative, BAF312, which only target S1P receptors 1 and 5, in a mouse model of cryptococcal infection. We found that treatment with FTY720, but not with BAF312, led to decreased survival and increased organ burden in mouse cryptococcal granulomas. Both FTY720 and BAF312 caused a profound CD4+ and CD8+ T cell depletion in blood and lungs but only treatment with FTY720 led to cryptococcal reactivation. Treatment with FTY720, but not with BAF312, was associated with disorganization of macrophages and with M2 polarization at the granuloma site. In a cell system, FTY720 decreased phagocytosis and production of reactive oxygen species by macrophages, a phenotype recapitulated in the S1pr3-/- knockout macrophages. Our results suggest that FTY720 reactivates cryptococcosis from the granuloma through a S1P receptor 3-mediated mechanism and support the rationale for development of more-specific receptor modulators for therapeutic use of MS.
Asunto(s)
Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/metabolismo , Clorhidrato de Fingolimod/farmacología , Granuloma/tratamiento farmacológico , Macrófagos Peritoneales/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Línea Celular , Criptococosis/metabolismo , Criptococosis/patología , Femenino , Granuloma/metabolismo , Granuloma/microbiología , Granuloma/patología , Humanos , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/patología , Masculino , RatonesRESUMEN
The human diseases caused by the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are associated with high indices of mortality and toxic and/or cost-prohibitive therapeutic protocols. The need for affordable antifungals to combat cryptococcal disease is unquestionable. Previous studies suggested benzimidazoles as promising anticryptococcal agents combining low cost and high antifungal efficacy, but their therapeutic potential has not been demonstrated so far. In this study, we investigated the antifungal potential of fenbendazole, the most effective anticryptococcal benzimidazole. Fenbendazole was inhibitory against 17 different isolates of C. neoformans and C. gattii at a low concentration. The mechanism of anticryptococcal activity of fenbendazole involved microtubule disorganization, as previously described for human parasites. In combination with fenbendazole, the concentrations of the standard antifungal amphotericin B required to control cryptococcal growth were lower than those required when this antifungal was used alone. Fenbendazole was not toxic to mammalian cells. During macrophage infection, the anticryptococcal effects of fenbendazole included inhibition of intracellular proliferation rates and reduced phagocytic escape through vomocytosis. Fenbendazole deeply affected the cryptococcal capsule. In a mouse model of cryptococcosis, the efficacy of fenbendazole to control animal mortality was similar to that observed for amphotericin B. These results indicate that fenbendazole is a promising candidate for the future development of an efficient and affordable therapeutic tool to combat cryptococcosis.
Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Animales , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Fenbendazol/farmacología , VirulenciaRESUMEN
Sphingosine-1-phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well-studied role of S1P signalling is to modulate T-cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.
Asunto(s)
Inmunidad Innata/genética , Inflamación/inmunología , Receptores de Lisoesfingolípidos/genética , Linfocitos T/inmunología , Animales , Movimiento Celular , Humanos , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Receptores de Lisoesfingolípidos/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismoRESUMEN
Fungal infections pose a significant risk for the increasing population of individuals who are immunocompromised. Phagocytes play an important role in immune defense against fungal pathogens, but the interactions between host and fungi are still not well understood. Sphingolipids have been shown to play an important role in many cell functions, including the function of phagocytes. In this review, we discuss major findings that relate to the importance of sphingolipids in macrophage and neutrophil function and the role of macrophages and neutrophils in the most common types of fungal infections, as well as studies that have linked these three concepts to show the importance of sphingolipid signaling in immune response to fungal infections.
Asunto(s)
Micosis/inmunología , Fagocitosis , Esfingolípidos/fisiología , Aspergilosis/inmunología , Candidiasis/inmunología , Criptococosis/inmunología , Humanos , Macrófagos/fisiología , Micosis/tratamiento farmacológicoRESUMEN
UNLABELLED: Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE: Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.
Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Compuestos de Bencilo/aislamiento & purificación , Compuestos de Bencilo/farmacología , Vías Biosintéticas/efectos de los fármacos , Hongos/efectos de los fármacos , Esfingolípidos/biosíntesis , Animales , Antifúngicos/efectos adversos , Antifúngicos/toxicidad , Compuestos de Bencilo/efectos adversos , Compuestos de Bencilo/toxicidad , Candidiasis/tratamiento farmacológico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Sinergismo Farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hongos/citología , Hongos/metabolismo , Hongos/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Estructura Molecular , Esfingolípidos/antagonistas & inhibidores , Resultado del TratamientoRESUMEN
Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK(-/-) (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1(-/-) mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1(-/-) mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response.
Asunto(s)
Criptococosis/patología , Cryptococcus neoformans/fisiología , Granuloma/patología , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/análogos & derivados , Animales , Líquido del Lavado Bronquioalveolar/química , Criptococosis/inmunología , Cryptococcus neoformans/genética , Cryptococcus neoformans/inmunología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Granuloma/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Esfingosina/metabolismoRESUMEN
Cryptococcosis is a life-threatening infection caused by pathogenic fungi of the genus Cryptococcus. Infection occurs upon inhalation of spores, which are able to replicate in the deep lung. Phagocytosis of Cryptococcus by macrophages is one of the ways that the disease is able to spread into the central nervous system to cause lethal meningoencephalitis. Therefore, study of the association between Cryptococcus and macrophages is important to understanding the progression of the infection. The present study describes a step-by-step protocol to study macrophage infectivity by C. neoformansin vitro. Using this protocol, the role of host sterols on host-pathogen interactions is studied. Different concentrations of methyl--cyclodextrin (MCD) were used to deplete cholesterol from murine reticulum sarcoma macrophage-like cell line J774A.1. Cholesterol depletion was confirmed and quantified using both a commercially available cholesterol quantification kit and thin layer chromatography. Cholesterol depleted cells were activated using Lipopolysacharide (LPS) and Interferon gamma (IFNγ) and infected with antibody-opsonized Cryptococcus neoformans wild-type H99 cells at an effector-to-target ratio of 1:1. Infected cells were monitored after 2 hr of incubation with C. neoformans and their phagocytic index was calculated. Cholesterol depletion resulted in a significant reduction in the phagocytic index. The presented protocols offer a convenient method to mimic the initiation of the infection process in a laboratory environment and study the role of host lipid composition on infectivity.