Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(12): 1959-1974, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790128

RESUMEN

Facial dysmorphology is a hallmark of 22q11.2 deletion syndrome (22q11DS). Nearly all affected individuals have facial features characteristic of the syndrome: a vertically long face with broad nasal bridge, narrow palpebral fissures and mild micrognathia, sometimes accompanied by facial skeletal and oropharyngeal anomalies. Despite the frequency of craniofacial dysmorphology due to 22q11.2 deletion, there is still incomplete understanding of the contribution of individual 22q11 genes to craniofacial and oropharyngeal development. We asked whether homozygous or heterozygous loss of function of single 22q11 genes compromises craniofacial and/or oropharyngeal morphogenesis related to these 22q11DS phenotypes. We found that Ranbp1, a 22q11DS gene that mediates nucleocytoplasmic protein trafficking, is a dosage-dependent modulator of craniofacial development. Ranbp1-/- embryos have variably penetrant facial phenotypes, including altered facial morphology and cleft palate. This 22q11DS-related dysmorphology is particularly evident in the midline of the facial skeleton, as evidenced by a robustly quantifiable dysmorphology of the vomer, an unpaired facial midline bone. 22q11DS-related oropharyngeal phenotypes reflect Ranbp1 function in both the cranial neural crest and cranial ectoderm based upon tissue-selective Ranbp1 deletion. Analyses of genetic interaction show that Ranbp1 mutation disrupts BMP signaling-dependent midline gene expression and BMP-mediated craniofacial and cranial skeletal morphogenesis. Finally, midline defects that parallel those in Ranbp1 mutant mice are observed at similar frequencies in the LgDel 22q112DS mouse model. Apparently, Ranbp1 is a modulator of craniofacial development, and in the context of broader 22q11 deletion, Ranbp1 mutant phenotypes mirror key aspects of 22q11DS midline facial anomalies.


Asunto(s)
Síndrome de DiGeorge , Animales , Ratones , Síndrome de DiGeorge/genética , Morfogénesis/genética , Modelos Animales de Enfermedad , Fenotipo , Cresta Neural
2.
Dev Biol ; 495: 76-91, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627077

RESUMEN

We defined a temporally and transcriptionally divergent precursor cohort in the medial olfactory epithelium (OE) shortly after it differentiates as a distinct tissue at mid-gestation in the mouse. This temporally distinct population of Ascl1+ cells in the dorsomedial OE is segregated from Meis1+/Pax7+ progenitors in the lateral OE, and does not appear to be generated by Pax7+ lateral OE precursors. The medial Ascl1+ precursors do not yield a substantial number of early-generated ORNs. Instead, they first generate additional proliferative precursors as well as a distinct population of frontonasal mesenchymal cells associated with the migratory mass that surrounds the nascent olfactory nerve. Parallel to these in vivo distinctions, isolated medial versus lateral OE precursors in vitro retain distinct proliferative capacities and modes of division that reflect their in vivo identities. At later fetal stages, these early dorsomedial Ascl1+ precursors cells generate spatially restricted subsets of ORNs as well as other non-neuronal cell classes. Accordingly, the initial compliment of ORNs and other OE cell types is derived from at least two distinct early precursor populations: lateral Meis1/Pax7+ precursors that generate primarily early ORNs, and a temporally, spatially, and transcriptionally distinct subset of medial Ascl1+ precursors that initially generate additional OE progenitors and apparent migratory mass cells before yielding a subset of ORNs and likely supporting cell classes.


Asunto(s)
Mucosa Olfatoria , Neuronas Receptoras Olfatorias , Ratones , Animales , Células Epiteliales
3.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722956

RESUMEN

22q11.2 Deletion Syndrome (22q11DS) is a neurodevelopmental disorder associated with cranial nerve anomalies and disordered oropharyngeal function, including pediatric dysphagia. Using the LgDel 22q11DS mouse model, we investigated whether sensory neuron differentiation in the trigeminal ganglion (CNgV), which is essential for normal orofacial function, is disrupted. We did not detect changes in cranial placode cell translocation or neural crest migration at early stages of LgDel CNgV development. However, as the ganglion coalesces, proportions of placode-derived LgDel CNgV cells increase relative to neural crest cells. In addition, local aggregation of placode-derived cells increases and aggregation of neural crest-derived cells decreases in LgDel CNgV. This change in cell-cell relationships was accompanied by altered proliferation of placode-derived cells at embryonic day (E)9.5, and premature neurogenesis from neural crest-derived precursors, reflected by an increased frequency of asymmetric neurogenic divisions for neural crest-derived precursors by E10.5. These early differences in LgDel CNgV genesis prefigure changes in sensory neuron differentiation and gene expression by postnatal day 8, when early signs of cranial nerve dysfunction associated with pediatric dysphagia are observed in LgDel mice. Apparently, 22q11 deletion destabilizes CNgV sensory neuron genesis and differentiation by increasing variability in cell-cell interaction, proliferation and sensory neuron differentiation. This early developmental divergence and its consequences may contribute to oropharyngeal dysfunction, including suckling, feeding and swallowing disruptions at birth, and additional orofacial sensory/motor deficits throughout life.


Asunto(s)
Síndrome de DiGeorge , Animales , Diferenciación Celular , Humanos , Ratones , Cresta Neural , Neurogénesis , Células Receptoras Sensoriales
4.
Neuron ; 102(6): 1127-1142.e3, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31079872

RESUMEN

Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Disfunción Cognitiva/genética , Síndrome de DiGeorge/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 2/genética , Animales , Axones/ultraestructura , Conducta Animal , Corteza Cerebral/citología , Dendritas/ultraestructura , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Lóbulo Frontal/metabolismo , Dosificación de Gen , Ratones , Mitocondrias/ultraestructura , Vías Nerviosas , Neuronas/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura
5.
Dev Biol ; 415(2): 228-241, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26988119

RESUMEN

We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.


Asunto(s)
Nervios Craneales/citología , Células Receptoras Sensoriales/citología , Animales , Apoptosis , Axones/fisiología , Diferenciación Celular , Linaje de la Célula , Nervios Craneales/embriología , Ectodermo/citología , Factores de Crecimiento de Fibroblastos/fisiología , Ganglios Sensoriales/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Cresta Neural/citología , Neurogénesis , Factores de Transcripción/genética , Tretinoina/fisiología , Proteína Wnt1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...