Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(33)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37187190

RESUMEN

Fluorite oxides are attractive ionic compounds for a range of applications with critical thermal management requirements. In view of recent reports alluding to anisotropic thermal conductivity in this face-centered cubic crystalline systems, we perform a detailed analysis of the impact of direction-dependent phonon group velocities and lifetimes on the thermal transport of fluorite oxides. We demonstrate that the bulk thermal conductivity of this class of materials remains isotropic despite notable anisotropy in phonon lifetime and group velocity. However, breaking the symmetry of the phonon lifetime under external stimuli including boundary scattering present in nonequilibrium molecular dynamics simulations of finite size simulation cell gives rise to apparent thermal conductivity anisotropy. We observe that for accurate determination of thermal conductivity, it is important to consider phonon properties not only along high symmetry directions commonly measured in inelastic neutron or x-ray scattering experiments but also of those along lower symmetry. Our results suggests that certain low symmetry directions have a larger contribution to thermal conductivity compared to high symmetry ones.

2.
Chem Rev ; 122(3): 3711-3762, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34919381

RESUMEN

To efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge as a result of both computational and experimental complexities. Here we provide a comprehensive review of thermal transport research on two actinide oxides: one currently in use in commercial nuclear reactors, uranium dioxide (UO2), and one advanced fuel candidate material, thorium dioxide (ThO2). In both materials, heat is carried by lattice waves or phonons. Crystalline defects caused by fission events effectively scatter phonons and lead to a degradation in fuel performance over time. Bolstered by new computational and experimental tools, researchers are now developing the foundational work necessary to accurately model and ultimately control thermal transport in advanced nuclear fuels. We begin by reviewing research aimed at understanding thermal transport in perfect single crystals. The absence of defects enables studies that focus on the fundamental aspects of phonon transport. Next, we review research that targets defect generation and evolution. Here the focus is on ion irradiation studies used as surrogates for damage caused by fission products. We end this review with a discussion of modeling and experimental efforts directed at predicting and validating mesoscale thermal transport in the presence of irradiation defects. While efforts in these research areas have been robust, challenging work remains in developing holistic tools to capture and predict thermal energy transport across widely varying environmental conditions.

3.
J Phys Condens Matter ; 33(27)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33455948

RESUMEN

Computing vibrational properties of crystals in the presence of complex defects often necessitates the use of (semi-)empirical potentials, which are typically not well characterized for perfect crystals. Here we explore the efficacy of a commonly used embedded-atomempirical interatomic potential for the UxTh1-xO2system, to compute phonon dispersion, lifetime, and branch specific thermal conductivity. Our approach for ThO2involves using lattice dynamics and the linearized Boltzmann transport equation to calculate phonon transport properties based on second and third order force constants derived from the empirical potential and from first-principles calculations. For UO2, to circumvent the accuracy issues associated with first-principles treatments of strong electronic correlations, we compare results derived from the empirical interatomic potential to previous experimental results. It is found that the empirical potential can reasonably capture the dispersion of acoustic branches, but exhibits significant discrepancies for the optical branches, leading to overestimation of phonon lifetime and thermal conductivity. The branch specific conductivity also differs significantly with either first-principles based results (ThO2) or experimental measurements (UO2). These findings suggest that the empirical potential needs to be further optimized for robust prediction of thermal conductivity both in perfect crystals and in the presence of complex defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...